## Software tools motivated by analysis of fMRI data

Kendrick Kay
http://cvnlab.net
Center for Magnetic Resonance Research (CMRR) University of Minnesota, Twin Cities
電

University
of Minnesota

- Where I am
- Center for Magnetic Resonance Research, University of Minnesota
- What I work on
- Computational models of visual processing
- Object and form vision

http://www.cmrr.umn.edu
- Approach
- Cognitive neuroscience (experiments, fMRI)
- Theoretical neuroscience (modeling)
- Data analysis (stats, programming)
- Resources
- http://cvnlab.net


## Computing approach

- Pull bits and pieces from:
- FreeSurfer
- SPM
http://github.com/kendrickkay/
- FSL
- Integrate into MATLAB pipelines
- Some standalone MATLAB toolboxes (GLMdenoise, analyzePRF, etc.)
- Analysis is done mostly on a large workstation, using cluster computing for parallel analysis of individual voxels


## Automated surface visualizations (1/7)

- High-throughput (avoid GUI, automated)
- Customizable (colormap, overlays, etc.)
- FreeSurfer-oriented but could be generalized
- Support for high-resolution surfaces
- Method: map pixels to vertices using nearest-neighbor interpolation, use caching mechanism for speed


## Automated surface visualizations (1/7)


sphere

occipital

medial

lateral

## Automated surface visualizations (1/7)



## Automated surface visualizations (1/7)



## Automated surface visualizations (1/7)

## Automated surface visualizations (1/7)



## Brain art (2/7)

- Real data masquerading as art!




## High-res fMRI pre-processing (3/7)

- Average T1s to improve SNR
- Co-registration: T1 to T1, T2 to T2, T2 to T1, EPI to T2
- Generate FreeSurfer cortical surfaces
(dense, equidistant layers, truncated)
- Fieldmaps:
- Regularize using local linear smoothing
- Interpolate over time
- EPI:
- Slice time correction
- Motion correction
- Fieldmap undistortion
- Interpolation onto cortical surfaces
- Total: 1 temporal resampling, 1 spatial resampling
- Homogenization of EPI intensities (polynomial basis functions, surface-based)
- High-res fMRI pre-processing (3/7)



## High-res fMRI pre-processing (3/7)



## High-res fMRI pre-processing (3/7)



Fieldmap magnitude


Fieldmap phase


Fieldmap phase (regularized)

## High-res fMRI pre-processing (3/7)



## High-res fMRI pre-processing (3/7)



## High-res fMRI pre-processing (3/7)








## Volume co-registration (4/7)

http://github.com/kendrickkay/alignvolumedata/

- Flexible inputs (any two volumes)
- Manual adjustment or automatic optimization
- Can use spatial mask
- Rigid-body or affine transformation


## Volume co-registration (4/7)

## http://github.com/kendrickkay/alignvolumedata/



## analyzePRF (5/7)

http://kendrickkay.net/analyzePRF/

- Fit a parametric model that characterizes stimulus-response mapping


Angle
Eccentricity
RF size

## GLMdenoise (6/7)

- Fit a GLM that derives noise regressors and produces denoised beta weights



Time $\rightarrow$

Global noise regressors

 whhnwwhwnumhl ... Time $\rightarrow$

Kay et al., Frontiers in Neuroscience, 2013

## GLMdenoise (6/7)

http://kendrickkay.net/GLMdenoise/

1. Perform initial model fit

2. Determine noise pool (cross-validated $R^{2}<0 \%$ )
3. Perform PCA on noise pool
4. Add PCs into the model, one at a time
5. Select number of PCs using cross-validation $\rightarrow$
6. Fit final model to the full dataset


Kay et al., Frontiers in Neuroscience, 2013

## Statistics, model fitting (7/7)

- Why statistical simulations?
- They help teach concepts
- They help check code correctness


## Statistics, model fitting (7/7)



Materials at http://kendrickkay.net/psych5007/

## Statistics, model fitting (7/7)

http://randomanalyses.blogspot.com


## Statistics, model fitting (7/7)

Kay \& Yeatman, eLife, 2017

http://cvnlab.net/vtcipsmodel/


## Summary

1. Automated surface visualizations
2. Brain art
3. High-res fMRI pre-processing
4. Volume co-registration
5. analyzePRF
6. GLMdenoise
7. Statistics, model fitting

## Acknowledgments

- Keith Jamison (UMN)

- Eshed Margalit (Stanford)


