Software tools motivated by analysis of fMRI data

Kendrick Kay http://cvnlab.net

Center for Magnetic Resonance Research (CMRR) University of Minnesota, Twin Cities

UNIVERSITY OF MINNESOTA

Introduction

Where I am

 Center for Magnetic Resonance Research, University of Minnesota

What I work on

- Computational models of visual processing
- Object and form vision

Approach

- Cognitive neuroscience (experiments, fMRI)
- Theoretical neuroscience (modeling)
- Data analysis (stats, programming)

Resources

http://cvnlab.net

http://www.cmrr.umn.edu

Computing approach

- Pull bits and pieces from:
 - FreeSurfer
 - SPM
 - FSL
- Integrate into MATLAB pipelines Some standalone MATLAB toolboxes (GLMdenoise, analyzePRF, etc.) Analysis is done mostly on a large workstation, using cluster computing for parallel analysis of
- individual voxels

http://github.com/kendrickkay/

- High-throughput (avoid GUI, automated)
- Customizable (colormap, overlays, etc.)
- FreeSurfer-oriented but could be generalized
- Support for high-resolution surfaces
- Method: map pixels to vertices using nearest-neighbor interpolation, use caching mechanism for speed

sphere

occipital

Kendrick Kay, CMRR, University of Minnesota

medial

lateral

Brain art (2/7)

Real data masquerading as art!

Brain art (2/7)

Brain art (2/7)

- Average T1s to improve SNR
- Co-registration: T1 to T1, T2 to T2, T2 to T1, EPI to T2
- Generate FreeSurfer cortical surfaces (dense, equidistant layers, truncated)
- Fieldmaps:
 - Regularize using local linear smoothing
 - Interpolate over time
- EPI:
 - Slice time correction
 - Motion correction
 - Fieldmap undistortion
 - Interpolation onto cortical surfaces
 - Total: 1 temporal resampling, 1 spatial resampling
- Homogenization of EPI intensities (polynomial basis functions, surface-based)

Kendrick Kay, CMRR, University of Minnesota

http://github.com/kendrickkay/cvncode/

Fieldmap magnitude

Fieldmap phase

Kendrick Kay, CMRR, University of Minnesota

Fieldmap phase (regularized)

Volume co-registration (4/7)

http://github.com/kendrickkay/alignvolumedata/

- Flexible inputs (any two volumes)
- Manual adjustment or automatic optimization
- Can use spatial mask
- Rigid-body or affine transformation

Volume co-registration (4/7)

http://github.com/kendrickkay/alignvolumedata/

analyzePRF (5/7) http://kendrickkay.net/analyzePRF/

Fit a parametric model that characterizes stimulus-response mapping

Angle

Kendrick Kay, CMRR, University of Minnesota

Eccentricity

from Kay et al., J Neurophys, 2013; also see Dumoulin & Wandell 2008

RF size

GLMdenoise (6/7)

Fit a GLM that derives noise regressors and produces denoised beta weights

Kendrick Kay, CMRR, University of Minnesota

http://kendrickkay.net/GLMdenoise/

Kay et al., Frontiers in Neuroscience, 2013

GLMdenoise (6/7)

Perform initial model fit

Raw MR signal

- 2. Determine noise pool (cross-validated $R^2 < 0\%$)
- 3. Perform PCA on noise pool
- 4. Add PCs into the model, one at a time
- Select number of PCs using cross-validation →
- 6. Fit final model to the full dataset

Kendrick Kay, CMRR, University of Minnesota

http://kendrickkay.net/GLMdenoise/

Kay et al., Frontiers in Neuroscience, 2013

Number of PCs

- Why statistical simulations?
 - They help teach concepts
 - They help check code correctness

Materials at http://kendrickkay.net/psych5007/

http://randomanalyses.blogspot.com

Kay & Yeatman, eLife, 2017

Kendrick Kay, CMRR, University of Minnesota

http://cvnlab.net/vtcipsmodel/

```
🔹 Anorra Fransis Smith Rays 🛪 🗶 A companisment stabilities at., 2 🖉 Example sampt Base ang theorem (2 a 1., 2
   The preview gifts bio/Throscog that com/kend 100 kg (Volgenode/Stationestar/Innoceder, pressing tent
                                                                                    TWN C R. Sept
                                                                                                                       3.4
🕹 ders 🔂 scheller 💐 mann 🔯 manner - 🎬 manner - 🚔 minner - 🚔 garma - 🚺 corlats 🚺 cornalis 🛄 cordats 🛄 cordats 🛄 cordats - 🧱 correnti 🔺 dentes
                                                                                                                   artirdi 🚺 taul
        IPS-scaling model
        case 10
          X = [repmat(eye(n),[3 1]) (1:3*n)'];
          seed0 = @(ix) [data(1:n,ix)' datatopdown(:,ix)' 0 1];
          optl = struct('stimulus',X,'data', @(ix) data(:,ix),'vxs', l:size(data,2), ...
                          'model',{ ...
                                   {{[] [NaN(1,n) NaN(1,3*n) -Inf -Inf; Inf(1,n+3*n+2)] ...
                            @(p,x) x(:,1:n)*p(1:n)' .* nanreplace(p(n+3*n+1)*p(n+x(:,n+1))'+p(n+3*n+2),1)) ...
                                    (@(ss) ss [-Inf(1,n) NaN(1,3*n) -Inf -Inf; Inf(1,n+3*n+2)] ...
                     @(ss) @(p,x) x(:,1:n)*p(1:n)' .* nanreplace(p(n+3*n+1)*p(n+x(:,n+1))'+p(n+3*n+2),1)}}, ...
                          'seed', seed0, 'resampling', xvalscheme, 'metric', metricfun, ...
                          'optimoptions', {{'Display', 'off'}}, extraopt{:});
       % finally, fit the model
        results = fitnonlinearmodel(opt1);
        % take the results and store them
        switch xx
        case 1
                                    = squish(results.modelfit(1,:,:),2);
          modelfit(:,:,mm)
          modelparams (mm)
                                    = squish(results.params(1,:,:),2);
        case 2
                                    = results.modelpred;
          modelpred(:,:,mm)
          modelperformance(:,mm) = results.aggregatedtestperformance(1,:);
```

Summary

- 1. Automated surface visualizations
- 2. Brain art
- 3. High-res fMRI pre-processing
- 4. Volume co-registration
- 5. analyzePRF
- 6. GLMdenoise

7. Statistics, model fitting

Acknowledgments

Keith Jamison (UMN)

Eshed Margalit (Stanford)

