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A B S T R A C T

Visual neuroscientists have long characterized attention as inducing a scaling or additive effect on fixed para-
metric functions describing neural responses (e.g., contrast response functions). Here, we instead propose that
top-down effects are more complex and manifest in ways that depend not only on attention but also other
cognitive processes involved in executing a task. To substantiate this theory, we analyze fMRI responses in human
ventral temporal cortex (VTC) in a study where stimulus eccentricity and cognitive task are varied. We find that as
stimuli are presented farther into the periphery, bottom-up stimulus-driven responses decline but top-down
attentional enhancement increases substantially. This disproportionate enhancement of weak responses cannot
be easily explained by conventional models of attention. Furthermore, we find that attentional effects depend on
the specific cognitive task performed by the subject, indicating the influence of additional cognitive processes
other than attention (e.g., decision-making). The effects we observe replicate in an independent experiment from
the same study, and also generalize to a separate study involving different stimulus manipulations (contrast and
phase coherence). Our results suggest that a quantitative understanding of top-down modulation requires more
nuanced characterization of the multiple cognitive factors involved in completing a perceptual task.
1. Introduction

To tackle the immense size and complexity of visual inputs, the brain
concentrates limited attentional resources on the most informative as-
pects of visual inputs. The mechanisms of attentional allocation have
been an active research area in past years, because of the pivotal role that
attention plays in different sensory processes, such as feature binding
(Treisman and Gelade, 1980), object recognition (Walther et al., 2002),
and scene understanding (Itti et al., 1998). Neuroscientists are particu-
larly interested in the neural substrates of attention. Converging evidence
from primate electrophysiology and human neuroimaging suggests that
attention induces enhancement in microscopic neuronal activity (Rey-
nolds et al., 2000) as well as macroscopic cortical responses (Gandhi
et al., 1999; Murray and Wojciulik, 2004). Such attention-induced
response enhancement is thought to produce more robust sensory rep-
resentations (Kastner and Ungerleider, 2000; Reynolds and Chelazzi,
2004).

Despite the well-established finding of attentional enhancement of
neural responses, the precise quantitative nature of attentional
enhancement remains unclear. One conventional approach to studying
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this issue is to characterize the impact of attention on the shape of
contrast response functions (CRFs) (Boynton, 2009; Buracas and Boy-
nton, 2007; Reynolds et al., 2000), that is, functions describing the
relationship between input stimulus contrast and output neural response.
Under the assumption that neural responses follow a fixed parametric
form (such as the commonly used Naka-Rushton function (Albrecht and
Hamilton, 1982)), attention is characterized as imposing a scaling or
additive effect on either input contrast or output response. As illustrated
in Fig. 1, attention could have the effects of amplifying the overall CRF
(Fig. 1A), enhancing the input contrast (Fig. 1B), or inducing a baseline
shift (Fig. 1C). Though mathematically elegant, this approach cannot
fully explain some experimental measurements found in the attention
literature (Li et al., 2008; Luck et al., 1997; Murray, 2008; Reynolds et al.,
2000), andmoreover, it is not clear whether this fixed-parameter approach
generalizes to stimulus dimensions other than contrast. Thus, it remains
an open question whether the approach provides a satisfactory account of
attentional effects.

In this paper, we advocate moving beyond the fixed-parameter
approach and argue that it is more appropriate to consider attention as
a flexible process that depends on the specific stimuli and task demands
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Fig. 1. Schematics of conventional models of attention and the flexible-attention framework. The first row depicts contrast response functions under unattended
(respunatt) and attended (respatt) conditions. Arrows indicate attentional enhancement. The second and third rows depict the amount of attentional enhancement under
two different metrics: percent enhancement (Equation (1)) and raw enhancement (Equation (2)), respectively. The response-gain model posits that attention imposes a
scaling effect (g) on the output, and therefore predicts that percent enhancement is a flat function of contrast. The contrast-gain model posits that attention imposes a
scaling effect (g) on the input contrast, and predicts that both percent enhancement and raw enhancement are inverted U-shaped functions. The additive-shift model
posits that attention imposes an additive effect (a) on the output, and predicts that raw enhancement is a flat function of contrast. In contrast to these fixed-parameter
approaches, the flexible-attention framework allows for the possibility that attentional effects are neither constant in percent enhancement nor constant in raw
enhancement. Here we depict one possibility where attention disproportionately enhances low-contrast responses.
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faced by the observer. In this flexible-attention framework, attentional ef-
fects cannot simply be reflected by contrasting two attention states (i.e.,
‘present’, ‘absent’), but rather, attentional effects depend on specific
properties of the cognitive processes involved in a task (e.g., whether a
detection or a discrimination task is being performed). Since cognitive
tasks can take on a variety of different forms, the effects of attention on
neural responses may manifest in different ways, and a fixed parametric
function might not accurately capture attentional effects observed in
arbitrary experiments. The idea of flexible attention is based upon two
well-established notions. First, attentional effects highly depend on many
factors, such as stimulus properties, such as stimulus size or uncertainty
(Carrasco, 2011; Herrmann et al., 2010; Ling and Carrasco, 2006;
Schwedhelm et al., 2016b). Second, it has been a well-established notion
that attention is never isolated and closely interacts with many other
cognitive processes, such as reward (Baldassi and Simoncini, 2011),
decision-making (Luo and Maunsell, 2015; Rahnev et al., 2011; Smith
and Ratcliff, 2009; Smith et al., 2004; Vernet et al., 2019), working
memory (Gazzaley and Nobre, 2012), expectation (Summerfield and
Egner, 2016; Wyart et al., 2012), task manipulation (Andersen et al.,
2011; Hayden and Gallant, 2009), and task difficulty level (Ress et al.,
2000). However, most prior studies only examined flexible attentional
effects on one specific stimulus dimension or task. Especially in neuro-
physiological studies, typically neurons in only one brain region are
recorded. To test the limitations of the fixed-parameter approach and the
generality of flexible attention, we need to quantify attentional effects
across different brain regions and under different stimulus and task
manipulations. Empirical evidence inspiring the flexible-attention
framework comes from a recent study (Kay and Yeatman, 2017) in
which we measured cortical responses to different stimulus categories
while subjects performed different tasks (henceforth referred to as the
2

category study).
Here, we strengthen support for the flexible-attention framework

through a re-examination of experimental measurements from a separate
study (Kay et al., 2015). In this study, cortical responsesweremeasured for
different stimulus positions while subjects performed different tasks
(henceforth referred to as the position study). We quantify attentional ef-
fects in human ventral temporal cortex (VTC) as a function of stimulus
eccentricity, and apply the same type of analysis to the category study,
thereby allowing direct comparison of results. Across studies, we show
that weak stimulus-driven responses receive disproportionately large
attentional enhancements and that attentional enhancements are more
pronounced for certain tasks compared to others. Such effects are not
easily explained by conventional models of attention, and therefore sug-
gest the need to develop a more flexible framework for attention. As such,
the central novelty of the present study is to analyze a large bulk of data
across different studies under different stimulus and taskmanipulations to
reveal the generality of flexible attention theory, directly in contrast to
most existing studies that merely focus one specific stimulus dimension or
task. In the Discussion, we propose specific ways in which the concept of
“flexible attention”might be formalized into quantitative models.

2. Materials and methods

Experiment and MRI data acquisition. Three adults participated in the
position study (Kay et al., 2015). In the task experiment of that study
(Fig. 2), face stimuli (3.2� diameter) appeared at different positions of a 5
� 5 spatial grid (1.5� spacing). This grid sampled six distinct eccentric-
ities (0�, 1.5�, 2.1�, 3�, 3.4� and 4.2�). Each trial consisted of 7 sequen-
tially presented faces (500 ms/face) at a single position but with various
identities and viewpoints. Some trials involved two consecutive faces



Fig. 2. Stimuli and tasks from the position study (Kay et al. (2015). In a given
trial, a sequence of face stimuli (7 face images) appears in one of the twenty-five
positions. The digit task is a one-back task on the stream of digits at the
center-of-gaze. The dot task is to detect the occurrence of a red dot on the faces.
The face task is a one-back task on the identity of the faces. Subjects maintained
central fixation, and stimuli were identical across the three tasks.
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sharing the same identity but different viewpoints, and some trials
involved a red dot appearing at the center of the faces (coincident with
one of the 7 faces). A stream of digits (0.3� � 0.3�) was placed at the
center-of-gaze. The identity of the digit (0–9) changed every 0.5 s: each
digit was presented for 0.25 s and was followed by a delay of 0.25 s. To
minimize visual adaptation, the digit color alternated between black and
white on successive presentations. Digit repetitions occurred with a
probability of 0.052, with a maximum of two successive identical digits
allowed (this matches the overall frequency of digit repetitions to the
overall frequency of dot occurrences and the overall frequency of
face-identity repetitions). In a given run, participants were instructed to
perform either (1) a digit task, during which participants pressed a button
whenever the same digit repeated; (2) a dot task, during which partici-
pants pressed a button whenever a red dot appeared; or (3) a face task,
during which participants pressed a button whenever the same face
identity repeated within a trial. Participants fixated the central stream of
digits during all three tasks (verified using an eyetracker). There were 75
experimental conditions (25 locations � 3 tasks) and 8 trials for each
condition throughout the experiment. All experimental details are
described in Kay et al. (2015).

The position study also included another experiment, called the
interleaved-task experiment. This experiment was the same as the task
experiment (Fig. 2) except that the three tasks were randomly intermixed
in a trial-by-trial fashionwithin each run. A central red letter (0.3� � 0.3�)
presented at the beginning of each trial served as a cue for which task to
perform. This experiment provides an additional, independent set of data.

Functional MRI data were collected at the Stanford Center for Cogni-
tive and Neurobiological Imaging using a 3T GE Signa MR750 scanner, a
Nova 16-channel visual RF coil, and a gradient-echo EPI pulse sequence
(TR 2 s, 2-mm voxels). The fMRI data were pre-processed by performing
slice time correction, spatial distortion correction, andmotion correction.
The fMRI data were further analyzed using GLMdenoise (Kay et al., 2013)
to estimate the percent blood-oxygenation-level-dependent (BOLD) signal
change (beta weight) evoked by each stimulus location under each task.
This analysis also generated 100 bootstrap samples of beta weights via
resampling of scanning runs.

Visual field maps (V1, V2, V3, and hV4) were defined using standard
retinotopic mapping scans. Three face-selective regions (inferior occipi-
tal gyrus, IOG-faces/OFA (abbreviated IOG); posterior fusiform gyrus,
pFus-faces/FFA-1 (abbreviated pFus); and middle fusiform gyrus, mFus-
faces/FFA-2 (abbreviated mFus)) were defined using independent func-
tional localizer scans. We also defined IPS as an additional ROI (beyond
3

that described the original paper). Specifically, we used the IPS-0 region
from an atlas of visual topographic organization (Wang et al., 2015); this
choice is reasonable given the limited coverage of parietal cortex avail-
able in the position study and the localization of top-down modulation to
IPS-0/1 as shown in Kay and Yeatman (2017).

Region-level analysis. After the GLM analysis, we pooled voxels within
regions of interests (ROIs) across subjects and hemispheres. The same
voxel selection criterion (goodness-of-fit of the population receptive field
model) used in our previous paper was applied to exclude non-spatially
selective voxels (Kay et al., 2015). To calculate region-level responses,
we first computed the median across bootstrap samples to obtain the
response of each voxel to the 75 experimental conditions. We noticed
that voxels with population receptive fields in the periphery often exhibit
negative BOLD responses when face stimuli appear in the central visual
field. To avoid this complication, we positively rectified all voxel re-
sponses. Note that this should drive our main conclusions as most
negative responses appeared in low-level visual cortex such as V1 but the
most pronounced attentional effects are found in high-level visual re-
gions (e.g., mFus, Fig. 4). Such negative BOLD responses are unlikely due
to attention. Finally, we calculated the region-level response by
computing the mean across voxels.

Two metrics were used to quantify the magnitude of attentional ef-
fects: percent enhancement and raw enhancement, which are defined as
follows:

Percent enhancement ¼ (Rdot/face - Rdigit) / Rdigit x 100, (1)

Raw enhancement ¼ Rdot/face - Rdigit, (2)

where Rdot/face indicates an ROI’s response for a stimulus location in the
dot or the face task and Rdigit indicates the ROI’s response to the same
location in the digit task. These calculations provide 50 values (25 for the
dot task and 25 for the face task) for each metric.

Analysis of data from the category study. We reanalyzed data from the
category study (Kay and Yeatman, 2017) using the same methods
described above. In brief, the category study involved presentations of
words, faces, and other stimulus categories varying in contrast and phase
coherence. Subjects performed one of three tasks: (1) a fixation task,
during which participants pressed a button whenever the fixation dot
turned red; (2) a categorization task, during which participants reported
whether the stimulus was a word, face, or neither; and (3) a one-back
task, during which participants pressed a button whenever an image
was repeated twice in a row.

In Figs. 6–8, we directly compare results across the position and
category studies. To facilitate comparison, we pooled voxels from pFus
and mFus in the position study to match the definition of FFA in the
category study. In Fig. 7, since overall BOLD response amplitudes might
vary for incidental reasons across subjects, we normalized the bottom-up
responses (responses during the digit task of the position study and re-
sponses during the fixation task of the category study) by dividing by the
maximal BOLD response amplitude observed in each study and ROI. For
example, the full set of bottom-up responses measured from FFA in the
category study (including contrast and phase-coherence manipulations)
was divided by the maximum response. Note that this normalization
affects raw enhancement values but not percent enhancement values.

Error bars and statistical analyses. Unless otherwise indicated, error
bars indicate 68% confidence intervals (corresponding to plus-or-minus
one standard deviation of a Gaussian noise distribution), obtained by
bootstrapping across locations that share the same eccentricity (position
study) or bootstrapping across subjects (category study). In the position
study, we regressed every bootstrap sample on stimulus eccentricity
(excluding eccentricity 0 given the availability of only one data point) to
obtain the slope of attentional effects as a function of eccentricity. We
then derived one-tailed significance values based on the bootstrapped
slope distribution (Figs. 4,5 and 6A-B). Similarly, we calculated the sta-
tistical significance of regression slopes with respect to stimulus contrast
and phase coherence in the category study (Fig. 6C–F).



Fig. 3. Percent BOLD signal change as a function of stimulus eccentricity and task. The order of stimulus eccentricity is reversed to make eccentricity-response
functions visually comparable to contrast-response functions. BOLD responses are pooled across subjects and hemispheres (see Methods). Error bars indicate 68%
confidence intervals on the bootstrapped mean of responses across locations at the same eccentricity (note that 0� corresponds to only one location and thus has no
error estimate). Unless specifically mentioned, the same error-bar convention is used in subsequent figures. Responses in high-level visual areas exhibit substantial
dependence on both eccentricity and task. Black arrows highlight the disproportionate attentional enhancement at high eccentricities, reminiscent of the schematic of
the flexible-attention framework in Fig. 1.

Fig. 4. Attentional enhancement as a
function of stimulus eccentricity and task.
BOLD responses during the stimulus-
relevant tasks (dot and face tasks) are
expressed as percent enhancement
(upper row) and raw enhancement (bot-
tom row) relative to the responses during
the digit task. The horizontal dashed line
indicates no attentional enhancement.
The magnitude of the attentional effect
increases from fovea to periphery, from
thedot task to the face task, and from low-
level to high-level visual areas. This
pattern is inconsistent with the three
conventional models of attention (see
explanations in the main text). Note that
the data point at 0� corresponds to only
one location and thus has no error
estimate.
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3. Results

3.1. Cortical responses as a function of stimulus eccentricity and
behavioral task

We refer to the main experiment in the position study as the task
experiment (see Methods for details). In the task experiment, participants
performed three different cognitive tasks on face stimuli that appeared at
4

six different eccentricities while BOLD signals in human ventral temporal
cortex were measured. Using face stimuli rather than artificial visual
stimuli (e.g., checkerboards) produces strong responses not only in early
visual areas but also in high-level category-selective regions. This allows
us to assess attentional effects throughout the visual cortical hierarchy.

Participants performed three different tasks. The digit task is a one-
back task on a stream of digits placed at the center-of-gaze. Face stim-
uli in this task are irrelevant to the participants, and the purpose of this



Fig. 5. Disproportionate attentional enhancements at high eccentricities in the interleaved-task experiment. A-B. Results are plotted in the same format as the results
from the task experiment shown in Figs. 3–4. Overall, the results from the two independent experiments are highly consistent.
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task is to maintain participants’ attention at the central fixation point.
Although participants may occasionally attend to the face stimuli, we
interpret responses in the digit task as primarily reflecting bottom-up
visual processing with minimal top-down influences. The dot task re-
quires participants to detect the occasional appearance of a red dot
superimposed on the face stimuli. In this task, face features (e.g., identity,
viewpoint) are irrelevant to the participants. The face task requires par-
ticipants to perform a one-back task on face identity; thus, face features in
this task are highly relevant to the participants.

We summarized the responses of each region-of-interest (ROI) as a
function of stimulus eccentricity, producing eccentricity-response func-
tions (ERFs). This is analogous to conventional contrast-response func-
tions where responses are plotted as a function of stimulus contrast.
Examining the ERFs allows us to inspect whether attentional effects
observed for contrast response functions generalize to other feature di-
mensions. We discovered several prominent effects. First, the evoked
responses in high-level face-selective areas generally decrease as stimulus
eccentricity increases (Fig. 3), indicating that stimulus eccentricity, like
contrast, has a strong influence on cortical responses. Second, the fact
that responses increase from the dot task to the face task suggests that the
brain enhances responses if the task requires detailed processing of the
attended stimulus. Finally, the effect of task on cortical responses
5

increases along the visual cortical hierarchy, suggesting that attentional
effects are more pronounced in brain regions whose representations are
critical to the successful execution of the task (i.e., face-selective regions
for judging face identity).
3.2. Conventional models of attention cannot fully account for observed
attentional effects

We next evaluate the accuracy of different attentional models. We
quantified attentional effects as a function of stimulus eccentricity and
task using two metrics: percent enhancement (Equation (1)) and raw
enhancement (Equation (2)). These metrics were used because they allow
direct assessments of the accuracy of the response-gain and the additive-
shift models of attention (Fig. 1). Results indicate that previously pro-
posed models of attention do not fully account for the data (Fig. 4, note
that our ROI-averaging approach is different from typical studies of
attention—see Discussion). The reasons are as follows.

First, the response-gain model posits that attention amplifies the
overall magnitude of ERFs, leading to larger attentional effects when
bottom-up stimulus-driven responses are larger, i.e., when the stimulus is
in the central visual field. It also predicts percent enhancement will be a
flat line as a function of stimulus eccentricity. These predictions are not



Fig. 6. Disproportionate attentional enhancements generalize across experiments. Panels A–B show results from the position study for the task and the interleaved-
task experiments, respectively. Panels C–F show results from the category study. Data from that study have been analyzed in the same way as Panels A–B, except that
the error bars reflect 68% confidence intervals on the mean across subjects (see Methods for details). Across metrics, the amount of attentional enhancement generally
decreases as stimulus strength (eccentricity, contrast, and phase coherence) increases. Enhancement tends to be greatest when stimulus strength is low and bottom-up
responses (green curves in the first row) are weak.
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consistent with Fig. 4: raw enhancement is not large in the fovea and
there is a clear rising trend of percent enhancement from fovea to pe-
riphery in the face-selective regions for both tasks (Fig. 4, bootstrap test,
all p-values < 0.05 except for mFus in the dot task where p ¼ 0.466).

Second, the additive-shift model posits that attention vertically shifts
ERFs; thus, raw enhancement should be a flat function of stimulus ec-
centricity. This prediction appears consistent with the data in the dot
task. The dot task, however, involved no demands for processing face
features and the ROIs exhibiting the largest attentional effects are face-
selective regions (also see Discussion). In the face task, raw enhance-
ment as a function of eccentricity is not a flat line and instead rises in
pFus as stimulus eccentricity increases (Fig. 4, bootstrap test, p < 0.001).

Finally, the contrast-gain model predicts the largest percent
enhancement and raw enhancement in middle levels of eccentricity,
resulting in inverted U-shaped functions of percent enhancement and raw
enhancement (Fig. 1B). This model also does not appear to be completely
consistent with the data, since the strongest attentional effects, under
both metrics, appear in the far visual periphery (also see Discussion).

Since the results are inconsistent with attentional models proposed in
previous literature, we propose the idea of flexible attention in which
attentional effects do not necessarily conform to simple parametric
changes. Before elaborating on this idea, we show first that the observed
effects are not idiosyncratic features of this particular experiment but
generalize across several stimulus and task manipulations.
3.3. Reproducible effect of flexible attention in an independent dataset

The results reported above are based on data from the task experi-
ment where three different cognitive tasks were performed in different
scanning runs. We also conducted an interleaved-task experiment in which
tasks were interleaved in a trial-by-trial fashion within a run (see
Methods for details). This experiment provides an independent dataset
that can be used to validate the findings above. We applied the same
analysis above on the data from the interleaved-task experiment. The two
independent experiments yield highly consistent results (Fig. 5). Percent
enhancement increases as stimulus eccentricity increases in all three
6

face-selective regions in both tasks (bootstrap test, all p-values < 0.05).
Raw enhancement also exhibits increases with eccentricity in the face
task (bootstrap test, p < 0.05 for pFus). Here we used a covert attention
paradigm such that some attention is already deployed to the stimulus in
fovea. Future studies might consider explicitly manipulate both eye fix-
ation and attention to investigate such fovea bias of attention.
3.4. Evidence for flexible attention in other experimental manipulations

The idea that attentional effects may not be captured by simple
parametric forms was motivated by observations in Kay and Yeatman
(2017) (termed the category study) in which responses to different stim-
ulus categories are measured. In that study, we reported that attention
selectively imposes larger scaling effects on weaker responses, a phe-
nomenon termed “stimulus-specific scaling”. To consolidate evidence for
flexible attention across studies, we apply the same analyses demon-
strated above to the data from the category study. The data from that
study have two major attractions: (1) In the position study, only one
stimulus feature–eccentricity–is manipulated. In the category study,
stimuli are manipulated in both contrast and phase coherence, thus
providing two extra feature dimensions that influence bottom-up visual
processing. (2) In the category study, responses in another ROI–visual
word form area (VWFA)–were also measured. This allows us to test
whether our findings are specific to FFA or generalize to other high-level
visual regions.

We extracted BOLD responses in FFA and VWFA toward their
preferred stimulus categories–faces and words, respectively. To make
data from the two studies more comparable, voxels from pFus and mFus
in the position study were pooled, consistent with the definition of FFA in
the category study. Furthermore, we highlight data from the stimulus-
relevant tasks that yield the strongest attentional effects: the face task
in the position study and the one-back task in the category study.

The two studies show a consistent pattern (Fig. 6): attentional effects
are larger for stimuli that evoke weak bottom-up responses (digit task in
the position study and fixation task in the category study). In the position
study, attentional effects in FFA increase as stimulus eccentricity
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increases (Fig. 6A and B, all p-values < 0.001). In the category study, we
find the same attentional effects with respect to decreasing stimulus
contrast in both FFA and VWFA (Fig. 6C, E, all p-values < 0.001 for both
percent and raw enhancement metrics). As explained previously, neither
the response-gain nor the additive-shift model of attention can account
for the results. Instead, these results suggest the need for the flexible-
attention framework (Fig. 1D). One exception to the general pattern of
large attentional enhancement at weak stimulus strength lies at phase
coherence data (i.e., Fig. 6D). In Fig. 6D, the percent enhancement in-
creases as phase coherence decreases (p < 0.001) but the raw enhance-
ment does not exhibit a clear decreasing pattern (p> 0.05). We speculate
that this may be because that 0% phase coherence images contain pure
noise. A one-back decision task on noise pattern can be very easy and
looks qualitatively different from the face and word one-back tasks per se
(also see Discussion). Nonetheless, this still highlights the need to
develop a formal quantitative model to characterize exact demand in a
task.

To gain further insight into the relationship between bottom-up re-
sponses and the magnitude of attentional enhancement, we plot percent
enhancement and raw enhancement values against the bottom-up re-
sponses across stimuli, tasks, studies, and ROIs (Fig. 7). The clear inverse
relationships between bottom-up responses and the amount of atten-
tional enhancement indicate that attention disproportionately enhances
weak neural responses.
3.5. Larger responses in IPS in high-demand tasks compared to low-
demand tasks

Why does the brain disproportionately enhance responses to some
stimuli and under some tasks compared to other experimental condi-
tions? We suggest that this flexibility in attentional enhancement reflects
the interaction between attention and the process of evidence accumu-
lation to accomplish a perceptual decision. In this sense, attention is just
one component of a perceptual task and we must consider other top-
down processes, such as decision-making, when interpreting the top-
down modulation of neural responses. Stimuli with certain properties
(e.g., low contrast, low phase-coherence) may yield weak or noisy sen-
sory signals, and may therefore require extra decision time to complete
the evidence accumulation process. We have identified the intraparietal
sulcus (IPS) as a potential region that is involved in evidence accumu-
lation and that may be the source of top-down enhancement of visually
evoked responses (Kay and Yeatman, 2017), which is based upon the rich
literature on the link between LIP activity to decision in primates
(Roitman and Shadlen, 2002; Shadlen and Newsome, 2001).

Following this approach, we compared IPS responses across the
various stimulus manipulations and tasks. IPS exhibited greater activity
in the face task compared to the dot task in the position study (Fig. 8A
7

and B). This is in line with the more pronounced attentional effects
observed in VTC for the face task. The result also mirrors the finding of
greater IPS activity in the one-back task compared to the categorization
task in the category study (Fig. 8C and D). The flexible-attention
framework also suggests that IPS activity might depend on the specific
stimulus being judged. Indeed, a relationship between IPS activity and
contrast and phase-coherence levels was established in Kay and Yeatman
(2017). However, in the position study, we did not find a systematic
correlation between IPS activity and attentional effects as a function of
eccentricity, possibly due to the limited slice coverage and limited sta-
tistical power (see Discussion).

4. Discussion

In this article, we analyzed cortical responses in human VTC as a
function of stimulus eccentricity and task. We found that the degree of
attention-induced response enhancement increases from fovea to pe-
riphery and from a face-unrelated task to a face-related task. Moreover,
analyses revealed consistent results in an independent experiment in the
same study as well as another study involving additional stimulus ma-
nipulations and ROIs. Taken together, these results provide new con-
straints for models of attention and suggest that the effects of attention
are dependent on stimuli and tasks in ways that are not captured by
simple parametric models of attention that have been previously pro-
posed. Understanding the mechanisms of attention might require further
delineating the interaction between attention and other cognitive pro-
cesses (e.g., decision-making).
4.1. Previous models of attention do not account for the observed effects

Prior research on the quantitative nature of attention has investigated
the impact of attention on the shape of CRFs (Boynton, 2009; Li et al.,
2008; Murray, 2008). This approach has prompted several influential
computational frameworks, such as the response-gain model (McAdams
and Maunsell, 1999), the contrast-gain model (Martinez-Trujillo and
Treue, 2004; Reynolds et al., 2000), the additive-shift model (Buracas
and Boynton, 2007), or the mixture of these models (Huang and Dobkins,
2005; Schwedhelm et al., 2016a). They used the fixed parametric form
(i.e., Naka-Rushton function) to summarize the neural consequences
induced by attention. One attraction of this fixed-parameter approach is
that data from monkey electrophysiological, human fMRI, and psycho-
physical studies can be analyzed and compared within a common
mathematical framework. Boynton (2009) used CRF modeling to sum-
marize findings from seven different studies. Among three fMRI studies
in his analysis, results in Buracas and Boynton (2007) and Murray (2008)
are better explained by the additive-shift model, while results in Li et al.
(2008) are better explained by the contrast-gain model. We acknowledge
Fig. 7. Inverse relationships between
normalized bottom-up responses to
percent enhancement (A), and normal-
ized raw enhancement (B). All data
points from the two studies depicted in
Fig. 6 are plotted. To ensure that BOLD
responses from different ROIs and ex-
periments are in comparable units, we
normalize the full set of responses
observed during the bottom-up tasks (the
digit task in the position study and the
fixation task in the category study) in
each ROI to a maximum of 1 (see
Methods). The shaded area indicates the
95% confidence interval of a boot-
strapped best-fit line. The results
demonstrate that attentional enhance-
ment tends to be greatest for stimuli that
elicit weak bottom-up responses.



Fig. 8. Percent enhancement and raw enhancement as a function of IPS activity. A-B. Data from the position study (task experiment and interleaved-task experiment,
respectively). The small open dots indicate different eccentricities, and the large solid dot indicates the mean across all locations. C-D. Data from the category study.
The small open dots indicate individual contrast and phase-coherence levels, and the large solid dot indicates the overall mean. The results show that IPS activity is
larger for the face task compared to the dot task and for the one-back task compared to the categorization task, and this is accompanied by larger attentional en-
hancements in FFA and VWFA.
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that the fixed-parameter approach can explain some empirical observa-
tions in previous studies. Especially, this approach can well explain re-
sults in some electrophysiological experiments. Here we do not
completely reject these results; we can only conclude that these models
do not provide satisfactory explanations at least for our data (see
Results).

With regard to the contrast-gain model, it is theoretically possible that
attention shifts contrast response functions so far to the left such that only
the upper asymptotic part of the response is observed, and this might be
one way of attempting to reconcile the contrast-gain model with our
measurements. However, notice that the contrast-gain model predicts
that attention should produce no response difference at high contrast
(i.e., 100%), but we can still see clear response differences at 100%
contrast as well as 100% phase coherence and at the fovea (upper row in
Fig. 6). Note that such differences may not be visible in empirical datasets
as it relates to the saturation point, the partial data sampling, or mea-
surement noise in CRFs. One recent psychophysical study proposed a new
baseline-shift model assuming that attention induces an additive
enhancement of input stimulus intensity (Cutrone et al., 2014). This
model in theory can produce the CRFs that look like our results here. But
this mechanism has been rarely discovered at the neural level.

Another limitation of the CRF modeling approach is that it is essen-
tially a descriptive approach that merely summarizes the apparent
structure of data into a function with a few parameters. A Naka-Rushton
function may fit any shape of nonlinear CRFs by properly tweaking pa-
rameters. A deeper problem is that this approach does not attempt to
characterize the neural source of attentional modulations, such as where
and how top-down influences are generated. In contrast, our efforts to
characterize the IPS as the source of top-down modulations provides an
opportunity to study more directly the causes of modulations of sensory
responses. Moreover, although some studies investigate only simple
discrete manipulations of attention states (i.e., ‘attend-in’ or ‘attend-
out’), our measurements and results suggest that attentional effects
8

reflect a more complex set of factors.
One notable difference between the conventional CRFs and the ERFs

here is that CRFs are usually calculated upon the responses of neurons
whose receptive fields match presented stimuli. Here, to calculate ERFs
we pool voxels who have diverse spatial tuning. We argue that such
difference is unlikely the major driver of the effects here as pronounced
attentional effects are found in high-level areas in which voxels have
large receptive fields. Also, our results still hold in the category study
where the CRFs are measured on FFA.
4.2. The flexible-attention framework

Cognitive tasks are diverse, imposing different task demands on
neural processing. For example, the categorization task in the category
study requires attention to the stimuli and decisions made upon them; the
one-back task in the category study requires both attention and temporal
maintenance of information. We propose a flexible-attention framework
that postulates that attention enhances responses in task-relevant regions
in order to process specific stimuli and meet certain task demands. This
framework highlights the limitations of the conventional approach that is
based solely on contrast response functions. Because cognitive tasks are
remarkably diverse, using a fixed parametric form, as the conventional
approach does, may overly simplify the neural processing of a task.
However, it is still not entirely clear how to quantitatively generalize and
predict responses under all possible stimulus conditions and attentional
states. We do not suggest a specific mathematical function, and more-
over, we emphasize that this is a framework that implies a change of
conceptual stance, as opposed to a fully quantitative model of attention.
Our framework can be viewed as a conceptual perspective on what types
of questions might be fruitful to pursue in future research. In this
framework, the observed top-down modulations in an experiment—-
which might be conventionally referred to as “attention”—depend on the
details of the other cognitive processes used to fulfill the task (e.g.,
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decision-making, memory). For example, the one-back task in the cate-
gory study imposes additional memory demands than a simple spatial
attention task. It has been known that detailed attentional manipulation,
for example, different perceptual loads (de Haas et al., 2014), will evoke
distinct neural activity patterns (Cukur et al., 2013; Nastase et al., 2017;
Vaziri-Pashkam and Xu, 2017). During the digit task, while it was the
experimental intention that spatial attention would be focused on the
central digits, it is certainly possible that the sudden appearance of faces
at peripheral locations may have produced some degree of bottom-up
attentional drive. Thus, we acknowledge that exogeneous attention
may have influenced our measurements, and this may have reduced the
observed differences between the digit task and the stimulus-directed
tasks (dot and face tasks).

Some task-specific details might be missing in conventional fixed-
parameter modeling approaches. One reason is that the studies using
this approach to investigate relations between attention and contrast
typically employ some standard experimental paradigms (e.g., spatial
cueing tasks). To build a model one has to focus on a specific regime,
stimulus, task, or experimental manipulation. Here, we instead use an
alternative approach and tried to sample more stimulus dimensions and
tasks. This approach can test more details in attentional processing. For
example, even though attention can be allocated to two different stimuli
in seemingly the same way, the task difficulty might differ for these
stimuli and lead to differing neural effects (Kay and Yeatman, 2017; Ress
et al., 2000). It is worth noting that some recent work extended con-
ventional contrast response functions into neural network models, add-
ing rich neural level mechanisms of attention (Lee and Maunsell, 2009;
Miconi and VanRullen, 2016; Reynolds and Heeger, 2009). These studies
are valuable as they make an important stride beyond merely using
descriptive functions. Our work here is consistent with the spirit of these
mechanistic models of attention.

Some previous studies are reminiscent of the concept of flexible
attention. For example, the spatial tuning of neural populations can be
flexibly altered according to the spatial focus of attention (Klein et al.,
2014; Vo et al., 2017). Our emphasis is that not only does the spatial
locus of attention influence neural activity, but the specific goal (or task
context) engaged by the observer also matters. It has been previously
shown that task difficulty in simple perceptual tasks imposes attentional
effects on task-informative neural populations (Scolari et al., 2012;
Scolari and Serences, 2009) and thus produces flexible cortical effects.
The present study extends these previous results to task contexts that
involve more complex cognitive processing (e.g., working memory).
Also, we attempt to move beyond just the neural consequences of
attentional modulation and attempt to make sense of the source of
attentional effects at the network level (see the following section).

Note that we do not view task difficulty as a confound. Rather, how
hard it is for a subject to execute a task may itself be part of the neural
phenomenon that we are trying to characterize. We further analyze the
behavioral data in the position study (see Supplementary Materials) and
found that the influence of task difficulty on behavioral performance
across eccentricities is quite small. Thus, task difficulty is relevant here
but cannot be the simple explanation for our results.

The inverse relationship that we have demonstrated between the
strength of bottom-up responses and the magnitude of attentional
enhancement has a clear interpretation in the context of evidence-
accumulation models of perceptual decision-making. Most visual tasks
require the brain to accumulate sensory evidence to form a decision, and
in general we may suppose that weak neural responses constitute weak
sensory evidence, therefore leading to longer evidence-accumulation.

Note that the flexible-attention framework does not imply that weak
neural responses always receive disproportionately large top-down
modulation. If a task involves no demand for processing weak stimuli,
the attentional effect on weak stimuli might be small. For an illustration,
we found attentional effects to be relatively small for 0% phase-
coherence stimuli (Fig. 6D–F). It may be the case that the absence of
coherent form in these stimuli may render perceptual decisions (such as
9

category judgments or one-back judgments) easier compared to the case
of partially coherent stimuli. Accordingly, the evidence-accumulation
process may be quite short. To more definitively resolve these un-
knowns, it is necessary to develop formal characterizations of the
decision-making and other cognitive processes that underlie task
execution.

4.3. IPS as a potential source of top-down attentional enhancement

One might wonder how the flexible-attention framework could be
used to quantitatively predict attentional effects given a known behav-
ioral task. Indeed, the flexible-attention framework aims to propose an
alternative treatment of attention other than the fixed-parameter
approach. One idea is that if attentional effects depend on the task
context (e.g., task difficulty), neural activity measurements signaling the
task context could be used to predict the degree of attentional modula-
tion. Following this idea, we proposed one such quantitative model,
called the IPS-scaling model, in the category study (Kay and Yeatman,
2017). In that study, we demonstrated that IPS activity predicts the
amount of task-induced response scaling observed in FFA and VWFA.

We explored whether this analysis can be extended to the data from
the position study. As shown in Fig. 8A and B, IPS responses increase
from the dot task to the face task, which mirrors the increase in top-down
modulation in VTC from the dot task to the face task. However, we did
not find systematic covariation between IPS activity and attentional
modulation across stimulus eccentricities within a task. This is possibly
due to experimental limitations. First, the position study did not set out to
study interactions between IPS and VTC, and the scanning protocol
provided only limited coverage of IPS (approximately up to IPS-0). This
may have contributed to the noisy measurements of IPS responses (large
horizontal error bars in Fig. 8A and B). Second, the experimental design
of the position study might not have been optimal for eliciting strong
responses from the IPS. This is because the very quick presentation of
stimuli (500 ms/face) forces participants to quickly make decisions and
this may preclude the complete unfolding of an evidence-accumulation
process.

4.4. Stronger attentional effects in high-level visual areas

In the present study, we primarily focused on high-level category-
selective visual regions instead of low-level or middle-level visual re-
gions, which are typically the focus of previous studies. One benefit of
choosing FFA and VWFA is that we have relatively advanced un-
derstandings of their functional selectivities (Grill-Spector et al., 2017).
Moreover, these high-level visual areas are known for receiving greater
attentional impacts compared to low-level visual areas (Kastner and
Ungerleider, 2000). Indeed, we found much stronger attentional effects
in high-level face-selective areas than low-level areas (Figs. 3 and 4). This
provides a larger dynamic range of attentional enhancement, which helps
to adjudicate different models of attention.

An important limitation of the analyses performed in this study is that
we averaged responses across voxels in each low-level region (see Fig. 3).
These averaged responses include many voxels that do not receive direct
visual stimulation due to the strong retinotopic specificity of voxels in
human early visual cortex. A more focused approach would be to strictly
localize and analyze subpopulations of voxels that respond to stimuli at
each eccentricity, as is common in classic studies of the effects of spatial
attention in early visual cortex (Li et al., 2008; Murray, 2008). Thus, the
quantifications performed in this study are not directly comparable to the
results found in prior studies. Our results are presumably consistent with
prior studies, in the sense that they provide a different view of the same
underlying system. The primary motivation for the region-averaged
approach is to provide a simple comparison for the results we find in
ventral temporal cortex. Note that ventral temporal cortex has neuronal
receptive fields that tend to be large and centered near the fovea (Desi-
mone and Gross, 1979; Hasson et al., 2002; Rolls et al., 2003; Sato, 1989),
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and thus is particularly well-suited for the region-averaged approach.
Another departure from previous studies is that we not only target

high-level visual areas but also measure their responses to a wide range of
stimulus and task manipulations. For instance, previous studies using the
CRF modeling approach typically manipulate only stimulus contrast.
How attention influences visual coding on a broader range of feature
dimensions (e.g., eccentricity, phase coherence) remains understudied.
In the position and category studies, we probed attentional effects as a
function of three stimulus features (eccentricity, contrast, and phase
coherence), providing a more complete characterization of functional
properties of the visual system. One recent study found that attentional
effects were larger in the fovea than in the periphery (Bressler et al.,
2013). That study, however, used simple stimuli (i.e., checkboard) that
elicited strong responses only in low-level visual areas. Another possi-
bility is that attentional effects might depend on the retinotopic coverage
of a brain area. FFA is known to over-represent visual fovea and atten-
tional effects might be stronger on the less-represented locations (i.e.,
visual periphery). This account can be verified by exploring attentional
effects in, for example, parahippocampal cortex, which tends to
over-represent the periphery (Epstein and Baker, 2019). More broadly,
one important direction for future work might be to compare differential
attentional effects across low-level and high-level cortices using stimuli
optimized for different areas.
4.5. Region-level characterization of attentional effects

The original analyses performed in the position study (Kay et al.,
2015) examined attentional effects on spatial representation in human
VTC at the level of single voxels. Through population receptive field
(pRF) modeling, it was shown that task-specific attention alters the
center, size, and amplitude of pRFs of voxels in VTC. This finding is
consistent with several recent studies that characterize spatial tuning
altered by attention in either the human or macaque brain (de Haas et al.,
2014; Klein et al., 2014; Sheremata and Silver, 2015; Womelsdorf et al.,
2006). One recent study suggested that the position shift of the pRFs
towards visual periphery acts as the chief factor that promotes population
codes (Vo et al., 2017).

The current paper performs a set of analyses that can be viewed as
different from and complementary to the modeling of individual voxels.
Specifically, we calculate region-level responses and investigate how and
why the strength of attentional modulations varies for different stimuli
and tasks. The approach here aims to directly contrast with the fixed-
parameter approach to studying attention as performed in previous
studies. Though the motivations are different, the two approaches have
revealed conceptually consistent results. As the pRFs of individual voxels
shift towards more peripheral locations, voxels exhibit stronger re-
sponses to peripheral stimuli. Thus, changes in voxel-level spatial pref-
erence are consistent with a region-level attentional enhancement that
varies with eccentricity. This effect is particularly pronounced in high-
level visual areas, such as FFA, but not in low-level areas, e.g., V1.
ROI-based analyses and voxel-based analyses are certainly different and
emphasize different aspects of population codes. They might yield
seemingly different results; for example, pooling voxel responses within
an ROI might dilute some voxel-specific effects. However, we highlight
that both the ROI analyses presented here and the voxel-based analysis
presented previously(Kay et al., 2015) demonstrate greater attentional
effects in the face task compared to the dot task, and attentional effects
are found to increase along the visual hierarchy. Note that this is not to
say that attentional effects will always be minimal in low-level areas;
low-level areas might exhibit strong effects for certain tasks and stimuli
(see also (McMains and Somers, 2004)).

Overall, the two approaches are complementary and indeed attempt
to analyze and interpret the same activity measurements, but they adopt
very different theoretical frameworks. Both ways of thinking about the
data are valuable.
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