
prioritizing existing, low-tech strategies for
not make inequity right, nor should it ham-
per society's efforts to reduce or eliminate
inequity where we can. If safe and effective
novel forms of cognitive enhancement
become available, they will present an
opportunity to insist on a distribution that
is fair and just. While not eliminating all
other less tractable forms of injustice in
the distribution of neural health and well-
being, it is possible to ensure that any new
forms of safe and beneficial neural modifi-
cation do not worsen those injustices.

Concluding Remarks
By broadening the discussion of cognitive
enhancement to include all forms of neural
modification, the Bioethics Commission
has expanded the scope of the current
debate. Neural modification – to maintain
or improve brain health within typical or
statistically normal ranges, treat neurolog-
ical disorders, and expand or augment
neural function – raises a set of ethical
considerations. Our recommendations
are intended to serve as a resource for
scientists, physicians, and policymakers.
We hope they will spark a broader discus-
sion of these issues and serve as an impe-
tus for scientists to consider how the
research they conduct today could trans-
form society, for better or worse, in the
years to come.

1Presidential Commission for the Study of Bioethical

Issues, 1425 New York Ave NW, Washington, DC 20005,

USA

6. Maslen, H. et al. (2014) The regulation of cognitive enhance-
ment devices: Extending the medical model. J. Law Biosci.
1, 68–93

7. Farah, M.J. et al. (2014) Cognitive enhancement. WIREs
Cogn. Sci. 5, 95–103

8. World Health Organization (2006) Neurological Disorders:
Public Health Challenges, World Health Organization

Forum
Resolving
Ambiguities of MVPA
Using Explicit
Models of
Representation
Thomas Naselaris1,* and
Kendrick N. Kay2,#

We advocate a shift in emphasis
within cognitive neuroscience from
multivariate pattern analysis (MVPA)
to the design and testing of explicit
models of neural representation.
With such models, it becomes pos-
sible to identify the specific repre-
sentations encoded in patterns of
brain activity and to map them
across the brain.

MVPA is a powerful analysis tool that is
replacing activation (or subtraction-based)
analysis as the go-to method for
maintaining and improving neural health,
rather than novel, high-tech strategies that
are often very expensive and have uncer-
tain or unproven benefits. A great deal of
evidence exists that healthy diet, ade-
quate exercise and sleep, and high-quality
education are associated with improved
and healthy cognitive function, and are
safe and carry virtually no risk of harm.
Public health measures such as lead-paint
abatement and requirements for toxin-free
workplaces support neural health. Con-
tinuing to advance science in these areas
can help the public improve its under-
standing of optimal lifestyles and environ-
mental conditions.

Second, we urged prioritization of treat-
ment of neurological diseases and injuries,
versus the development of new drugs and
devices solely to make people smarter.
The burden of neurological disorders is
high and is projected to increase consid-
erably in future years with an aging popu-
lation. Neurological disorders are
estimated to affect as many as a billion
people globally, including millions of peo-
ple in the USA alone [8]. One of the primary
goals of neuroscience is to prevent and
treat these disorders. Directing research
funding towards treatment, rather than
enhanced cognition, helps to improve
the lives of millions of individuals, attends
to justice, and honors the primary goal of
scientific inquiry.

However, although we recognized the
need to prioritize both low-tech strategies
to improve neural function and new tech-
niques to treat disease, we did not ignore
newer, high-tech enhancement techni-
ques. Our third recommendation was that
research should be conducted on the
prevalence, benefits, and risks of new
neural modifiers to augment or enhance
neural function. Very limited evidence of
this type exists for the off-label use of
stimulant drugs such as Adderall or the
use of brain-stimulation techniques includ-
ing transcranial direct stimulation to
improve cognition in healthy people.
Before society can make accurate ethical
assessments of these novel enhancement
techniques, we must understand them.

If research does demonstrate that partic-
ular novel neural enhancers are safe and
beneficial, then stakeholders must seek
justice in their distribution. In our fourth
recommendation, we urged that policy-
makers ensure equitable access to bene-
ficial neural enhancers. In our society,
access to existing services and opportu-
nities, such as education and nutrition, is
not equal across individuals or groups.
However, societal tolerance of inequity
in access to other crucial goods does
Trends 
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interpreting functional magnetic resonance
imaging (fMRI) data [1]. MVPA refers to the
classification of patterns of brain activity into
discrete experimental conditions (e.g., dif-
ferent stimuli, tasks, or cognitive states).
The major appeal of MVPA is its sensitivity:
it can identify populations of voxels that
encode information about experimental
conditions, even when the average ampli-
tude of activity in the population does not
vary across conditions.

Despite its appeal, MVPA has critical limi-
tations as a tool for identifying the repre-
sentations that are encoded in patterns of
brain activity. There are three distinct kinds
of ambiguity inherent to MVPA. The most
benign kind is geometric ambiguity. This
refers to the fact that activity patterns, inter-
preted as multivariate vectors, can be dis-
criminated by MVPA on the basis of either
their length (overall activation) or orienta-
tion. Although the pooling of length and
orientation provides statistical sensitivity,
these distinct features of the activity pattern
cannot be disentangled when using MVPA
alone. For example, the overall activity in a
region may simply be larger in one condition
compared with another, a fact that is
missed in MVPA. Geometric ambiguity
can be resolved by performing additional
analyses (such as activation analysis).
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More problematic is spatial ambiguity.
MVPA provides little information about
how representations are organized
across the cortical surface (e.g., the ret-
inotopic organization of visual cortex [2]).
This ambiguity results from the fact that
different cortical organizations can give
rise to identical classification performance
[3]. Techniques for resolving spatial ambi-
guity in MVPA, such as the use of search-
lights or examination of classifier weights,
can be misleading [4–6]. For example,
significant nonzero classifier weights
can be obtained for voxels whose average
response is the same across the experi-
mental conditions of interest [5].

The most serious limitation of MVPA is
representational ambiguity. Even moder-
ately complex stimuli or task paradigms
contain many distinct sources of variation.
Each source corresponds to different
stimulus features or cognitive states that
might be encoded in brain activity. MVPA
does not provide a framework for testing
and distinguishing between different sour-
ces of variation [3].

Here is an illustration of how representa-
tional ambiguity can arise. Suppose we
hypothesize that a brain region of interest
(ROI) specializes in representing the genre
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d in the population activity.
No. 10
of movie that one is watching (Figure 1). To
test the hypothesis, we conduct an exper-
iment in which subjects are scanned while
viewing segments of movies of two differ-
ent genres, say action movies and roman-
tic comedies. If it turns out that a classifier
is able to accurately discriminate the
movie segments of each genre on the
basis of measured brain activity, we will
have established that something about
the movie segments is indeed encoded
in the activity patterns of our ROI. How-
ever, we will not have determined what
that something is. A variety of alternative
features correlated with movie genre
might be encoded in the activity patterns,
including visual and auditory energy (e.g.,
action movies contain more energy than
romantic comedies do), amount of social
interaction, amount of humor, amount of
spoken language, and so on.

In some cases, it may be possible to dis-
criminate features by using an experimen-
tal design that varies one and only one
feature at a time. Although careful experi-
mental design will always have an impor-
tant role in studying brain representations,
in the case of MVPA studies, experimental
design can be surprisingly difficult. For
example, consider a highly controlled
experiment in which sinusoidal gratings
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of different orientations are presented:
successful orientation decoding may not
necessarily derive from an encoding of the
orientation of the stimulus, but may
instead derive from an encoding of edge
artifacts in the stimulus [3].

One might attempt to use MVPA to com-
pare the movie-genre hypothesis against
alternative hypotheses by comparing clas-
sification performance obtained for differ-
ent features. For example, we might divide
movie segments into low/high stimulus
energy, low/high social interaction, low/
high humor content, and so on, and then
train a separate classifier to discriminate
each of these. According to this logic, if
movie genre is discriminated with higher
performance than other features, then
the movie-genre hypothesis is affirmed.
However, this approach is problematic
because decoding performance does not
directly indicate the amount of variance in
activity that is attributable to a given feature.
A feature may be perfectly decoded from
population activity even though it is respon-
sible for little variance in activity. For exam-
ple, a purely visual representation might
support highly accurate decoding of genre,
even though genre per se explains little
variance in the brain responses. Therefore,
comparing classification performance
across different kinds of feature is an
‘apples-to-oranges’ comparison that is
likely to mislead.

Many researchers have adopted an alter-
native approach for identifying representa-
tions encoded in brain activity [2,3,7–11].
We refer to this approach as voxelwise
modeling (VM). The hallmark of VM is an
explicit model of representation, known as
an encoding model. Formally, an encoding
model proposes a set of sensory or cogni-
tive features and specifies how these fea-
tures are transformed into a prediction of
brain activity for the experiment under con-
sideration. A given set of features repre-
sents an explicit hypothesis about the
representation encoded in the brain. This
hypothesis is tested by evaluating how
much variance in measured activity the
encoding model explains (Box 1). Compet-
ing hypotheses can be adjudicated by
comparing the amount of variance
explained by different encoding models.
Alternatively, hypotheses can be assessed
by comparing how well a representational
similarity matrix (e.g., a matrix with correla-
tions between pairs of experimental con-

Box 1. Steps in Building Encoding Models
� Design the experiment: typically, a large number o
postponing commitment to the specific features tha
� Collect the data: physiological responses are measu
response variability (i.e., noise level) can be quantifie
� Select a model: the features hypothesized to be e
� Fit the model: free parameters of the model (e.g., we
This can entail ordinary least-squares estimation o
regression or the lasso.
� Summarize model parameters: parameters are s
simple metrics (e.g., mean or median) or more sophis
or model-based decoding). Reliability of parameter es
or subjects).
� Quantify model accuracy: to control for overfitting, m
data (e.g., new trials, experimental conditions, or subjec
� Consider alternative models: the modeling procedu
better explained by a simpler or completely different
matches the representational similarity
matrix constructed from the measured
activity. This approach, called ‘representa-
tional similarity analysis’, imposes fewer
constraints on the mapping between fea-
tures and brain activity [12]. In both cases,
hypotheses are tested by evaluating explicit
models of representation.

VM offers important advantages over
MVPA. There is no notion of geometric
or spatial ambiguity. Analyses are per-
formed on individual voxels, so the length
and orientation of an activity pattern
are naturally separated and individual
parameters can be mapped to the cortical
surface at the native resolution of the data.

Importantly, VM provides the means
to resolve representational ambiguity.
Encoding models predict activity based on
explicitly defined representations. This
makes it possible to enumerate different
potential sources of variation, test the
explanatory power of each source of varia-
tion, and identify specific data points that are
well or poorly predicted by a given model [7].
Trends 
Finally, VM provides a quantitative
benchmark of our understanding of neural
representation. In an experiment
where responses are measured to a range
of stimulus or task conditions, a model
that perfectly explains the observed vari-
ance in voxel activity in an ROI (or, alter-
natively, a similarity matrix constructed
from the observed activity patterns [12])
could be offered as a complete theory of
the ROI.

In conclusion, by improving detection sen-
sitivity, MVPA is a powerful tool that has
served the fMRI community well. In situa-
tions where prediction of stimulus or task
states is of primary importance, MVPA will
continue to have a useful role. However,
MVPA provides fundamentally ambiguous
results regarding the nature of brain rep-
resentations. As research in cognitive neu-
roscience moves forward, we suggest
that MVPA should be replaced by explicit
models of representation.
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Spotlight
Color Preferences
Differ with Variations
in Color Perception

Karen B. Schloss1,*

A recent study demonstrates that
color preferences of red–green
dichromats differ systematically
from color preferences of typical
trichromatic observers. These dif-
ferences can be partially explained
by variations in cone-opponent
mechanisms of dichromatic and
trichromatic observers, but they
may also be explained from an
ecological perspective.

It is well established that, on average,
people with typical color vision prefer

554 Trends in Cognitive Sciences, October 2015, Vol. 19, 
blues most and yellow–greens least, with
moderate preference for hues in between
[1–5]. However, if that were the complete
story, then everyone would want to wear
blue clothes, drive blue cars, and live in
blue houses containing blue artifacts.
Clearly that is not the case; people sur-
round themselves with a wide variety of
colors. What explains this disconnect
between average color preferences and
the ways people choose to color their
world? The answer has at least two critical
factors: individual differences and contex-
tual effects. In this article, I highlight new
discoveries on individual differences. (See
[6] for a discussion of contextual effects for
different kinds of objects.)

In their recent study, Álvaro, Moreira, Lillo,
and Franklin [7] were the first to report color
preferences of individuals with atypical color
vision. They compared color preferences of
typical males (trichromats) with those of two
types of red–green dichromatic males: pro-
tanopes (missing long-wavelength sensitive
photoreceptors; L-cones) and deutera-
nopes (missing medium-wavelength sensi-
tive photoreceptors; M-cones). Previous
simulations of dichromatic color perception
suggest that protanopes and deutera-
nopes experience the spectrum within a
range that trichromats would consider
blues, grays, and yellows [8]. Although
both have deficits in their red–green sys-
tem, their percepts are not identical (e.g.,

protanopes perceive reds as darker-yel-
lows and deuteranopes perceive reds as
relatively lighter-yellows). Álvaro et al.
found that, unlike trichromats who pre-
ferred blues most, dichromats maximally
preferred saturated-yellow [7]. Surpris-
ingly, deuteranope preferences were
more similar to those of typical trichro-
matic males than to protanopes. This
was partly because deuteranopes and
trichromats strongly disliked dark-yellow
relative to most other colors, whereas
protanopes liked dark-yellow as much
as reds, cyans, and even some blues.

Because color preferences of trichromats
can be modeled by cone-contrast

No. 10
mechanisms in the visual system [9], Álvaro
et al. predicted that dichromatic preferen-
ces could be modeled by modified predic-
tors tailored to dichromats’ altered cone-
opponent mechanisms. The standard
cone-contrast model explained significant
variance (40%) in trichromat color prefer-
ences but it accounted for no significant
variance in dichromat preferences for the
full set of colors. However, the red–green
system predicted deuteranope preferen-
ces for the subset of light colors, suggest-
ing that the so-called ‘red–green colorblind’
individuals have some red–green discrimi-
nability. A modified cone-contrast predictor
coding for perceived saturation (vividness)
in protanopes strongly predicted their color
preferences, which may be analogous to
trichromats preferring more saturated col-
ors [1,3,4]. This factor also predicted deu-
teranope preferences, but only for
saturated colors. Accordingly, modified
versions of the cone-contrast mechanisms
are useful for characterizing some limited
aspects of dichromatic color preferences.

Álvaro et al. emphasized physiological
interpretations of their data, but their
results can also be considered from an
ecological perspective. The ecological
valence theory (EVT) posits that color pref-
erences are determined by preference for
all objects or entities associated with the
colors [1]. For example, trichromats like
saturated-blue because it is mostly asso-

ciated with positive objects (e.g., clear
sky), and dislike dark-yellow because it
is mostly associated with negative objects
(e.g., biological wastes). Average color
preferences are strongly predicted by an
estimate of preference for all objects asso-
ciated with each color (Weighted Affective
Valence Estimate, or WAVE; 80% variance
explained). WAVEs explained substantially
more variance than a model based on the
cone-contrasts (37%) [1]. Moreover, the
EVT makes strong predictions about indi-
vidual differences: Individuals should have
different color preferences to the extent
that they have different preferences for
the same color-associated objects or
associate different objects with the same
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