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SUMMARY

Recent studies have used fMRI signals from early
visual areas to reconstruct simple geometric pat-
terns. Here, we demonstrate a new Bayesian decoder
that uses fMRI signals from early and anterior visual
areas to reconstruct complex natural images. Our
decoder combines three elements: a structural
encoding model that characterizes responses in early
visual areas, a semantic encoding model that charac-
terizes responses in anterior visual areas, and prior
information about the structure and semantic content
of natural images. By combining all these elements,
the decoder produces reconstructions that accu-
rately reflect both the spatial structure and semantic
category of the objects contained in the observed
natural image. Our results show that prior information
has a substantial effect on the quality of natural image
reconstructions. We also demonstrate that much
of the variance in the responses of anterior visual
areas to complex natural images is explained by the
semantic category of the image alone.

INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides a

measurement of activity in the many separate brain areas

that are activated by a single stimulus. This property of fMRI

makes it an excellent tool for brain reading, in which the

responses of multiple voxels are used to decode the stimulus

that evoked them (Haxby et al., 2001; Carlson et al., 2002; Cox

and Savoy, 2003; Haynes and Rees, 2005; Kamitani and Tong,

2005; Thirion et al., 2006; Kay et al., 2008; Miyawaki et al.,

2008). The most common approach to decoding is image classi-

fication. In classification, a pattern of activity across multiple

voxels is used to determine the discrete class from which the

stimulus was drawn (Haxby et al., 2001; Carlson et al., 2002;

Cox and Savoy, 2003; Haynes and Rees, 2005; Kamitani and

Tong, 2005).

Two recent studies have moved beyond classification and

demonstrated stimulus reconstruction (Thirion et al., 2006;
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Miyawaki et al., 2008). The goal of reconstruction is to produce

a literal picture of the image that was presented. The Thirion

et al. (2006) and Miyawaki et al. (2008) studies achieved recon-

struction by analyzing the responses of voxels in early visual

areas. To simplify the problem, both studies used geometric

stimuli composed of flickering checkerboard patterns.

However, a general brain-reading device should be able to recon-

struct natural images (Kay and Gallant, 2009). Natural images are

important targets for reconstruction because they are most rele-

vant for daily perception and subjective processes such as

imagery and dreaming. Natural images are also very challenging

targets for reconstruction, because they have complex statistical

structure (Field, 1987; Karklin and Lewicki, 2009; Cadieu and

Olshausen, 2009) and rich semantic content (i.e., they depict

meaningful objects and scenes). A method for reconstructing

natural images should be able to reveal both the structure and

semantic content of the images simultaneously.

In this paper, we present a Bayesian framework for brain

reading that produces accurate reconstructions of the spatial

structure of natural images, while simultaneously revealing their

semantic content. Under the Bayesian framework used here,

a reconstruction is defined as the image that has the highest

posterior probability of having evoked the measured response.

Two sources of information are used to calculate this probability:

information about the target image that is encoded in the

measured response and pre-existing, or prior, information about

the structure and semantic content of natural images.

Information about the target image is extracted from

measured responses by applying one or more encoding models

(Nevado et al., 2004; Wu et al., 2006). An encoding model is

represented mathematically by a conditional distribution, p(rjs),

which gives the likelihood that the measured response r was

evoked by the image s (here bold r denotes the collected

responses of multiple voxels; italicized r will be used to denote

the response of a single voxel). Note that functionally distinct

visual areas are best characterized by different encoding

models, so a reconstruction based on responses from multiple

visual areas will use a distinct encoding model for each area.

Prior information about natural images is also represented as

a distribution, p(s), that assigns high probabilities to images

that are most natural (Figure 1, inner bands of image samples)

and low probabilities to more artificial, random, or noisy images

(Figure 1, outermost band of image samples).
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Figure 1. The Bayesian Reconstruction

Framework

The goal of this experiment was to reconstruct

target images from BOLD fMRI responses

recorded from occipital cortex. Reconstructions

were obtained by using a Bayesian framework to

combine voxel responses, structural and semantic

encoding models, and image priors. Target

images were grayscale photographs selected at

random from a large database of natural images.

The fMRI slice coverage included early visual

areas V1, V2, and V3; intermediate visual areas

V3A, V3B, V4, and lateral occipital (labeled LO

here); and a band of occipital cortex anterior to

lateral occipital (here called AOC). Recorded voxel

responses were used to fit two distinct encoding

models: a structural encoding model (green) that

reflects how information is encoded in early visual

areas and a semantic encoding model (blue) that

reflects how information is encoded in the AOC.

Three image priors were used to bias reconstruc-

tions in favor of those with the characteristics of

natural images: a flat prior that does not bias

reconstructions, a sparse Gabor prior that ensures

that reconstructions possess the lower-order

statistical properties of natural images, and

a natural image prior that ensures that reconstruc-

tions are natural images. Several different types of

reconstructions were obtained by combining the

encoding models and priors in different ways: the structural model and a flat prior; the structural model and a sparse Gabor prior; the structural model and a natural

image prior; and the structural model, the semantic model, and a natural image prior (hybrid method). These various methods produced reconstructions with very

different structural and semantic qualities, as shown in Figures 2 and 3.
The critical step in reconstruction is to calculate the probability

that each possible image evoked the measured response. This is

accomplished by using Bayes theorem to combine the encoding

models and the image prior:

pðsjrÞfpðsÞ
Y

i

piðrijsÞ (1)

The posterior distribution, p(sjr), gives the probability that

image s evoked response r. The encoding models and voxel

responses from functionally distinct areas are indexed by i. To

produce a reconstruction, p(sjr) is evaluated for a large number

of images. The image with the highest p(sjr) (or posterior proba-

bility) is selected as the reconstruction, commonly known as the

maximum a posteriori estimate (Zhang et al., 1998).

In a previous study, we used the structural encoding model

without invoking the Bayesian framework in order to solve image

identification (Kay et al., 2008). The goal of image identification is

to determine which specific image was seen on a certain trial,

when that image was drawn from a known set of images. Image

identification provides an important foundation for image recon-

struction, but it is a much simpler problem because the set of

target images is known beforehand. Furthermore, success at

image identification does not guarantee success at reconstruc-

tion, because a target image may be identified on the basis

of a small number of image features that are not sufficient to

produce an accurate reconstruction.

In this paper, we investigate two key factors that determine the

quality of reconstructions of natural images from fMRI data:
encoding models and image priors. We find that fMRI data and

a structural encoding model are insufficient to support high-

quality reconstructions of natural images. Combining these

with an appropriate natural image prior produces reconstruc-

tions that, while structurally accurate, fail to reveal the semantic

content of the target images. However, by applying an additional

semantic encoding model that extracts the information present

in anterior visual areas, we produce reconstructions that accu-

rately reflect semantic content of the target images as well. A

comparison of the two encoding models shows that they most

accurately predict the responses of functionally distinct and

anatomically separated voxels. The structural model best

predicts responses of voxels in early visual areas (V1, V2, and

so on), while the semantic model best predicts responses of vox-

els anterior to V4, V3A, V3B, and the posterior portion of lateral

occipital. Furthermore, the accuracy of predictions of these

models is comparable to the accuracy of predictions obtained

for single neurons in area V1.

RESULTS

Blood-oxygen-level-dependent (BOLD) fMRI measurements of

occipital visual areas were made while three subjects viewed

a series of monochromatic natural images (Kay et al., 2008).

Functional data were collected from early (V1, V2, V3) and inter-

mediate (V3A, V3B, V4, lateral occipital) visual areas and from

a band of occipital cortex directly anterior to lateral occipital

that we refer to here as anterior occipital cortex (AOC). The
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Figure 2. The Effect of Prior Information on Recon-

struction with a Structural Encoding Model

Three target images are shown in the first column (red

borders). The second through fourth columns show recon-

structions obtained using the structural encoding model and

three different types of prior information. Column two shows

reconstructions obtained using a flat prior that does not bias

reconstructions. Regions of the target images that have low

texture contrast are depicted as smooth gray patches, and

regions that have substantial texture contrast are depicted

as textured patches. Thus, the flat prior reconstructions reveal

the distribution of texture contrast in the target images but

cannot readily be interpreted. Column three shows recon-

structions obtained using a sparse Gabor prior that ensures

that reconstructions possess the lower-order statistical prop-

erties of natural images. These reconstructions appear to be

smoothed versions of those obtained with the flat prior, and

they also cannot be readily interpreted. Column four shows

reconstructions obtained using a natural image prior that

ensures that reconstructions are natural images. These recon-

structions accurately reflect the structure of the target images

(numbers in bottom right corner of each reconstruction indi-

cate structural accuracy, see main text for details). The

example in row one is from subject TN; rows two and three

are from subject SN.
experiment consisted of two stages: model estimation and

image reconstruction. During model estimation, subjects viewed

1750 achromatic natural images while functional data were

collected. These data were used to fit encoding models for

each voxel. During image reconstruction, functional data were

collected while subjects viewed 120 novel target images. These

data were used to generate reconstructions.

Reconstructions that Use a Structural Encoding Model
for Early Visual Areas and an Appropriate Image Prior
Our Bayesian framework requires that each voxel be fit with an

appropriate encoding model. In our previous study, we showed

that a structural encoding model based upon Gabor wavelets

could be used to extract a large amount of information from indi-

vidual voxels in early visual areas (Kay et al., 2008). Therefore, we

began by using this model to produce reconstructions.

Under the structural encoding model, the likelihood of a voxel’s

response r to an image s is determined by its tuning along the

dimensions of space, orientation, and spatial frequency (Kay

et al., 2008). The model includes a set of weights that can be

adjusted to fit the specific tuning of single voxels. These weights

were fit for all of the voxels in our data set using a coordinate-

descent optimization procedure (see Experimental Procedures).

This procedure produced a separate encoding model, p(rjs), for

each voxel. Those voxels whose responses could be predicted

accurately by the model were then selected (see Experimental

Procedures for specific voxel selection criteria) for use in recon-

struction. The individual models for each of the selected voxels

were then combined into a single multivoxel structural encoding

model, p(rjs) (see Experimental Procedures for details on how

individual models are combined into a multivoxel model). The

majority of selected voxels were located in early visual areas

(V1, V2, and V3).
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The Bayesian framework also requires an appropriate prior.

The reconstructions reported in Thirion et al. (2006) and

Miyawaki et al. (2008) used no explicit source of prior informa-

tion. To obtain comparable results to theirs, we began with

a flat prior that assigns the same probability to all possible

images. This prior makes no strong assumptions about the stim-

ulus but instead assumes that noise patterns are just as likely as

natural images (see Figure 1). Thus, when the flat prior is used,

only the information encoded in the responses of the voxels is

available to support reconstruction. [Formally, using the flat prior

amounts to setting the prior, p(s), in Equation 1 to a constant.]

To produce reconstructions, the structural encoding model,

the flat prior, and the selected voxels were used to evaluate

the posterior probability (see Equation 1) that an image s evoked

the responses of the selected voxels. A greedy serial search

algorithm was used to converge on an image with a high (relative

to an initial image with all pixels set to zero) posterior probability.

This image was selected as the reconstruction. Typical recon-

structions are shown in the second column of Figure 2. In the

example shown in row one, the target image (first column, red

border) is a seaside cafe and harbor. The reconstruction (second

column) depicts the shore as a textured high-contrast region and

the sea and sky as smooth low-contrast regions. In row two, the

target image is a group of performers on a stage, but the recon-

struction depicts the performers as a single textured region on

a smooth background. In row three, the target image is a patch

of dense foliage, which the reconstruction depicts as a single

textured region that covers much of the visual field.

All of the example reconstructions obtained using the struc-

tural model and the flat prior have similar qualities. Regions of

the target images that have low contrast or little texture are

depicted as smooth gray patches in the reconstructions, and

regions that have significant local contrast or texture are
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depicted as textured patches. Local texture and contrast are

apparently the only information about natural images that can

be recovered reliably from moderate-resolution BOLD fMRI

measurements of activity in early visual areas. Unfortunately,

reconstructions based entirely on texture and contrast do not

provide enough information to reveal the identity of objects

depicted in the target images.

To improve reconstructions, we sought to define a more infor-

mative image prior. A distinguishing feature of natural images is

that they are composed of many smooth regions, disrupted

by sharp edges. These characteristics are captured by two

lower-level statistical properties of natural images: they tend

to have a 1/f amplitude spectrum (Field, 1987), and they are

sparse in the Gabor-wavelet domain (Field, 1994). In contrast,

unnatural images such as white noise patterns generally have

much different power spectra and are not sparse. We therefore

designed a sparse Gabor prior that biases reconstructions in

favor of images that exhibit these two well-known statistical

properties (see Figure 1).

To produce a new set of reconstructions, the structural encod-

ing model, the sparse Gabor prior, and the same set of voxels

selected above were used to evaluate posterior probabilities

(see Equation 1). The same greedy serial search algorithm

mentioned above was used to converge on an image with a rela-

tively high posterior probability. This image was selected as the

reconstruction. Results are shown in the third column of Figure 2.

The main effect of the sparse Gabor prior is to smooth out the

textured patches apparent in the reconstruction with a flat prior.

As a result, the reconstructions are more consistent with the

lower-level statistical properties of natural images. However,

these reconstructions do not depict any clearly identifiable

objects or scenes and thus fail to reveal the semantic content

of the target images.

Because the sparse Gabor prior did not produce reconstruc-

tions that reveal the semantic content of the target images, we

sought to introduce a more sophisticated image prior. Natural

images have complex statistical properties that reflect the

distribution of shapes, textures, objects, and their projections

onto the retina, but thus far theorists have not captured these

properties in a simple mathematical formalism. We therefore

employed a strategy first developed in the computer vision

community to approximate these complex statistical properties

(Hays and Efros, 2007; Torralba et al., 2008). We constructed an

implicit natural image prior by compiling a database of six million

natural images selected at random from the internet (see

Experimental Procedures). The implicit natural image prior can

be viewed as a distribution that assigns the same probability

to all images in the database and zero probability to all other

images.

To produce reconstructions using the natural image prior, the

posterior probability was evaluated for each of the six million

images in the database (note that in this case the posterior

probability is proportional to the likelihood given by the encod-

ing model); the image with the highest probability was selected

as the reconstruction. Examples are shown in the fourth column

of Figure 2. In row one, both the target image and the recon-

struction depict a shoreline (compare row one, column one

to row one, column four). In row two, both the target image
and the reconstruction depict a group of performers on a

stage. In row three, both the target image and the reconstruc-

tion depict a patch of foliage. In all three examples, the spatial

structure and the semantic content of the reconstructions

accurately reflect both the spatial structure and semantic

content of the target images (also see Figure S3A). Thus, these

particular reconstructions are both structurally and semantically

accurate.

The examples shown in Figure 2 were selected to demonstrate

the best reconstruction performance obtained with the structural

encoding model and the natural image prior. However, most

of the reconstructions obtained this way are not semantically

accurate. Several examples of semantically inaccurate recon-

structions are shown in the second column of Figure 3. In row

one, the target image is a group of buildings, but the reconstruc-

tion depicts a dog. In row two, the target image is a bunch of

grapes, but the reconstruction depicts a hand against a checker-

board background. In row three, the target image is a crowd of

people in a corridor, but the reconstruction depicts a building.

In row four, the target image is a snake, but the reconstruction

depicts several buildings.

Close inspection of the reconstructions in the second column

of Figure 3 suggests that they are structurally accurate. For

example, the target image depicting grapes in row two has

high spatial frequency, while the reconstruction in row two

contains a checkerboard pattern with high spatial frequency as

well. However, the reconstruction does not depict objects that

are semantically similar to grapes, so it does not appear similar

to the target image. This example reveals that structural similarity

alone can be a poor indicator of how similar two images will

appear to a human observer. Because human judgments of

similarity will inevitably take semantic content into account,

reconstructions should reflect both the structural and semantic

aspects of the target image. Therefore, we sought to incorporate

activity from brain areas known to encode information about the

semantic content of images.

A Semantic Encoding Model
There is evidence that brain areas in anterior visual cortex

encode information that is related to the semantic content of

images (Kanwisher et al., 1997; Epstein and Kanwisher, 1998;

Grill-Spector et al., 1998; Haxby et al., 2001; Grill-Spector and

Malach, 2004; Downing et al., 2006; Kriegeskorte et al., 2008).

In order to add accurate semantic content to our reconstruc-

tions, we designed a semantic encoding model that describes

how voxels in these areas encode information about natural

scenes. The model automatically learns—from responses

evoked by a randomly chosen set of natural images—the

semantic categories that are represented by the responses of

a single voxel.

To fit the semantic encoding model, all 1750 natural images

used to acquire the model estimation data set were first labeled

by human observers with one of 23 semantic category names

(see Figure S1). These categories were chosen to be mutually

exclusive yet broadly defined, so that the human observers

were able to assign each natural image a single category that

best described it (observers were instructed to label each

image with the single category they deemed most appropriate
Neuron 63, 902–915, September 24, 2009 ª2009 Elsevier Inc. 905
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and reasonable; see Experimental Procedures for details).

Importantly, the images had not been chosen beforehand to

fall into predefined categories; rather, the categories were de-

signed post hoc to provide reasonable categorical descriptions

of randomly selected natural images.

After the images in the model estimation set were labeled, an

expectation maximization optimization algorithm (EM) was used

to fit the semantic model to each voxel (see Experimental Proce-

dures and Appendix 1 in the Supplemental Data for details). The

Figure 3. The Effect of Semantic Information on Reconstructions

Four target images are shown in the first column (red borders). The second

column shows reconstructions obtained using the structural encoding model

and the natural image prior. These reconstructions are structurally accurate

(numbers in bottom right corner indicate structural accuracy, see main text

for details). However, the objects depicted in the reconstructions are not

from the same semantic categories as those shown in the target images.

Thus, although these reconstructions are structurally accurate they are not

semantically accurate. The third column shows reconstructions obtained

using the structural encoding model, the semantic encoding model, and the

natural image prior (the hybrid method). These reconstructions are both struc-

turally and semantically accurate. The examples in rows from one through

three are from subject TN; row four is from subject SN.
906 Neuron 63, 902–915, September 24, 2009 ª2009 Elsevier Inc.
EM algorithm learned the probability that each of the 23 cate-

gories would evoke a response either above, below, or near

the average of each voxel. The resulting semantic model reflects

the probability that a voxel ‘‘likes,’’ ‘‘doesn’t like,’’ or ‘‘doesn’t

care about’’ each semantic category. This information is then

used to calculate p(rjs)—the likelihood of the observed

response, given a sampled image (see Figure S2 and Experi-

mental Procedures for more details). We fit the semantic model

to all of the voxels in the data set and then inspected those voxels

whose responses could be predicted accurately by the model

(see Experimental Procedures for specific voxel selection

criteria).

Examples of the semantic encoding model fit to three voxels

(one from each of the three subjects in this study) are shown in

Figure 4. Gray curves show the overall distribution of responses

to all images in the model estimation set. The colored curves

define responses that are above (blue curve), below (red curve),

or near (green curve) the average response. The bottom boxes

give the probability that an image from a specific semantic cate-

gory (category names at left; names are abbreviated, see

Figure S1 for full names) will evoke a response above (blue

boxes), below (red boxes), or near (green boxes) the average

response. For each of these voxels, most categories that pertain

to nonliving things—such as textures, landscapes, and build-

ings—are likely to evoke responses below the average. In

contrast, most categories that pertain to living things—such as

people, faces, and animals—are likely to evoke responses above

the average. Average responses tend to be evoked by a fairly

uniform distribution of categories. Thus, at a coarse level, activity

in each of these voxels tends to distinguish between animate and

inanimate things.

To determine how the representations of structural and

semantic information are related to one another, we compared

the prediction accuracy of the structural model with that of

the semantic model (Figure 5, left panels). We quantified predic-

tion accuracy as the correlation (cc) between the response

observed in each voxel and the response predicted by each en-

coding model for all 120 images in the image reconstruction set.

The points show the prediction accuracy of the structural en-

coding model (x axis) and semantic encoding model (y axis)

for each voxel in our slice coverage. The distribution of points

has two wings. One wing extends along the y axis, and the

other extends along the x axis. This indicates that there are

very few voxels whose responses are accurately predicted

by both models. Most voxels whose responses are accurately

predicted by the structural model (cc > 0.353; blue voxels;

see Experimental Procedures for criteria used to set this

threshold) are not accurately predicted by the semantic model.

Most voxels whose responses are accurately predicted by the

semantic model (cc > 0.353; magenta voxels) are not accurately

predicted by the structural model. The wings have similar

extents, indicating that the semantic model provides predic-

tions that are as accurate as those provided by the structural

model. Remarkably, the predictions for both the structural

and semantic voxels can be as accurate as those obtained

for single neurons in area V1 (David and Gallant, 2005; Caran-

dini et al., 2005). Note that there is a large central mass of

voxels (gray); these voxels either have poor signal quality or



Neuron

Reconstructing Natural Images from Brain Activity
Figure 4. The Semantic Encoding Model Fit to Single Voxels from Three Subjects

(A) The top panel shows response distributions of one voxel for which the semantic encoding model produced the most accurate predictions (subject TN). The

gray curve gives the distribution of z-scored responses (x axis) evoked by all images used in the model estimation data set. This distribution was modeled in terms

of three underlying Gaussian distributions (colored curves labeled by the indicator variable z). Responses below average are shown in red (z = 1), responses near

average in green (z = 2), and above average in blue (z = 3). The black bars in the bottom panels give the probability that each semantic category, c, (abbreviated

labels at left) will evoke a response below the average (red box), near the average (green box), or above the average (blue box). (Note that there are no probabilities

for the text category because there were no text images in the model estimation data set.) Images depicting living things tend to evoke a large response from this

voxel, while those depicting nonliving things evoke a small response. Thus, this voxel discriminates between animate and inanimate semantic categories.

(B) The same analysis shown in (A) applied to the single voxel from subject KK for which the semantic encoding model produced the most accurate predictions.

Semantic tuning for this voxel is similar to the one shown in (A).

(C) The same analysis shown in (A) and (B) applied to the single voxel from subject SN for which the semantic encoding model produced the most accurate predic-

tions. Semantic tuning for this voxel is similar to those shown in (A) and (B).
represent information not captured by either the structural or

semantic models.

In order to determine the anatomical locations of the voxels in

the two separate wings, we projected voxels whose responses

are accurately predicted by the structural (blue) and semantic

(magenta) models onto flat maps of the right and left occipital

cortex (Figure 5, right panels). Most of the voxels whose

responses are accurately predicted by the structural model are

located in early visual areas V1, V2, and V3. In contrast, most

of the voxels whose responses are accurately predicted by the

semantic model are located in the AOC, at the anterior edge of

our slice coverage.

Our results show that the semantic encoding model accurately

characterizes a set of voxels in anterior visual cortex that are

functionally distinct and anatomically separated from the struc-

tural voxels located in early visual cortex. The structural voxels

in early visual areas encode information about local contrast

and texture, while the semantic voxels in anterior portions of

lateral occipital and in the AOC encode information related to

the semantic content of natural images. Therefore, a reconstruc-

tion method that uses the structural and semantic encoding

models to extract information from both sets of voxels should

produce reconstructions that reveal both the structure and

semantic content of the target images.
Reconstructions Using Structural and Semantic
Models and a Natural Image Prior
To incorporate the semantic encoding model into the reconstruc-

tion algorithm, we first selected all of the voxels for which the

semantic encoding model provided accurate predictions. Most

of these voxels were located in the anterior portion of lateral

occipital and in the AOC (see Experimental Procedures for details

on voxel selection). The individual models for each selected voxel

were then combined to into a single, multivoxel semantic encod-

ing model, p(rjs) (see Experimental Procedures for details).

To produce reconstructions, the semantic and structural

encoding models (with their corresponding selected voxels)

were used to evaluate the posterior probability (see Equation 1)

of each of the six million images in the natural image prior. For

convenience, we refer to the use of the structural model,

semantic model and natural image prior as the hybrid method.

Reconstructions obtained using the hybrid method are shown

in the third column of Figure 3. In contrast to the reconstructions

produced using the structural encoding model and natural image

prior, the hybrid method produces reconstructions that are both

structurally and semantically accurate. In the example shown in

row one, both the target image and the reconstruction depict

buildings. In row two, the target image is a bunch of grapes,

and the reconstruction depicts a bunch of berries. In row three,
Neuron 63, 902–915, September 24, 2009 ª2009 Elsevier Inc. 907
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Figure 5. Structural versus Semantic Encoding

Models

(A) The left panel compares the accuracy of the structural

encoding model (x axis) versus the semantic encoding model

(y axis) for every voxel within the slice coverage (subject TN).

Here accuracy is defined as the correlation (cc) between the

response observed in each voxel and the response predicted

by each encoding model for all 120 images in the image recon-

struction set. The distribution of points has two wings. One

wing extends along the y axis, and another extends along

the x axis, indicating that very few voxels are accurately pre-

dicted by both models. The voxels whose responses are accu-

rately predicted by the structural model but not the semantic

model are shown in blue (cc > 0.353, p < 3.9*10�5; see Exper-

imental Procedures for criteria used to set this threshold). The

voxels whose responses are accurately predicted by the

semantic model but not the structural model are shown in

magenta (same statistical threshold as above). Most voxels

are poorly predicted by both models (gray), either because

neither model is appropriate or because of poor signal quality.

The right panel shows flat maps of the left and right hemi-

spheres of this subject. Visual areas identified using a retino-

topic mapping procedure (see Experimental Procedures) are

outlined in white. Voxels whose responses are accurately pre-

dicted by the structural (blue) or semantic (magenta) models

are plotted on the flat maps (the few voxels for which both

models are accurate are shown in white). Most structural

voxels are located in early visual areas V1, V2, and V3. Most

semantic voxels are located in the anterior portion of lateral

occipital (labeled LO) and in the anterior occipital cortex.

(B) Data for subject KK, format same as in (A). Most structural

voxels are located in early visual areas V1, V2, and V3.

Semantic voxels are located in the anterior occipital cortex.

(C) Data for subject SN, format same as in (A) and (B). Struc-

tural voxels are located in early visual areas V1, V2, and V3.

Semantic voxels are located in the anterior occipital cortex.
the target image depicts a crowd of people in a corridor, and the

reconstruction depicts a crowd of people on a narrow street. In

row four, the target image depicts a snake crossing the visual

field at an angle, while the reconstruction depicts a caterpillar

crossing the visual field at a similar angle. (In Figure S3, we

also present the second and third most probable images in the

natural image prior. The spatial structure and semantic content

of these alternative reconstructions is consistent with the best

reconstruction.)

Objective Assessment of Reconstruction Accuracy
To quantify the spatial similarity of the reconstructions and the

target images, we used a standard image similarity metric

proposed previously (Brooks and Pappas, 2006). This metric

reflects the complex wavelet-domain correlation between the

reconstruction and the target image. We applied this metric to

the four types of reconstruction presented in Figures 2 and 3.

As shown by the plots on the left side of Figure 6, the structural

accuracy of all the reconstruction methods that use a non-flat

prior is significantly greater than chance for all three subjects

(p < 0.01, t test; comparison is for each individual subject).
Reconstruction with the structural model and the natural image

prior is significantly more accurate than reconstruction with

a sparse Gabor prior, (p < 0.01, t test; comparison is for each

individual subject). These results indicate that prior information

is important for obtaining accurate image reconstructions. The

structural accuracy of the structural model with natural image

prior and the hybrid method are not significantly different

(p > 0.3, t test; comparison is for each individual subject), so

structural accuracy is not affected by the addition of the

semantic model.

To quantify the semantic similarity of the reconstructions and

the target images, we formulated a semantic accuracy metric.

In this case, we estimated the probability that a reconstruction

obtained using some specific reconstruction method would

belong to the same semantic category as the target image.

(Because calculating semantic accuracy requires time-con-

suming labeling of many images, we calculated semantic accu-

racy for only the first 30 images in the image reconstruction set;

see Experimental Procedures for details.) We considered

semantic categories at four different levels of specificity, from

two broadly defined categories (‘‘mostly animate’’ versus
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Figure 6. Structural and Semantic Accuracy of Recon-

structions

(A) The left panel shows the structural accuracy of recon-

structions using several different methods (subject TN). In

each case, structural reconstruction accuracy (y axis) is

quantified using a similarity metric that ranges from 0.0 to

1.0. From left to right, the bars give the structural similarity

between the target image and reconstruction (mean ±

SEM, image reconstruction data set) for the structural model

with a flat prior; the structural model with a sparse Gabor

prior; the structural model with a natural image prior; and

the hybrid method consisting of the structural model, the

semantic model, and the natural image prior. The red line

indicates chance performance. Reconstructions produced

using the sparse Gabor or natural image prior are signifi-

cantly more accurate than chance (p < 0.01, t test; for this

subject only, the reconstructions produced using a flat prior

are also significant at this level). Reconstruction with the

structural model and the natural image prior is significantly

more accurate than reconstruction with a sparse Gabor prior

(p < 0.01, t test). These results indicate that prior information

is important for obtaining structurally accurate image recon-

structions. The structural accuracy of the structural model

with natural image prior and the hybrid method are not signif-

icantly different (p > 0.3, t test), so structural accuracy is not

affected by the addition of the semantic model. The right

panel shows semantic accuracy of reconstructions obtained

using the structural model with natural image prior (blue) and

the hybrid method (black). In each case, semantic recon-

struction accuracy (y axis) is quantified in terms of the prob-

ability that a reconstruction will belong to the same semantic

category as the target image (error bars indicate bootstrap-

ped estimate of SD). The number of semantic categories

varies from two broadly defined categories to the 23 specific

categories shown in Figure 4 (x axis). The red curve indicates

chance performance. The semantic accuracy of the recon-

structions obtained using the structural model and natural

image prior are rarely significantly greater than chance

(p > 0.3, binomial test). However, the semantic accuracy

of the hybrid method is significantly greater than chance

regardless of the number of semantic categories (p < 10�5,

binomial test).

(B) Data for subject KK, format same as in (A). Prior informa-

tion is important for obtaining structurally accurate image

reconstructions (p values of structural accuracy comparisons

same as in A). The semantic accuracy of the hybrid method is

significantly greater than chance (p < .002, binomial test).

(C) Data for subject SN, format same as in (A). Prior information is important for obtaining structurally accurate image reconstructions (p values of structural

accuracy comparisons same as in A). The semantic accuracy of the hybrid method is significantly greater than chance (p < 10�5, binomial test).
‘‘mostly inanimate’’) to 23 narrowly defined categories (see

Figure S1 for complete list). Semantic accuracies for the struc-

tural model with natural image prior and the hybrid method are

shown by the plots on the right side of Figure 6 (note that

semantic accuracy cannot be determined for methods that did

not use the natural image prior). The semantic accuracy of the

hybrid method is significantly greater than chance for all three

subjects, and at all levels of specificity (p < 10�5, binomial test,

for subjects TN and SN; p < 0.002, binomial test, for subject

KK). The semantic accuracy of the reconstructions obtained

using the structural model and natural image prior are rarely

significantly greater than chance for all three subjects (p > 0.3,

binomial test). The hybrid method is quite semantically accurate.

When two categories are considered, accuracy is 90% (for
subject TN), and when the full 23 categories are considered,

accuracy is still 40%. In other words, reconstructions produced

using the hybrid method will correctly depict a scene whose ani-

macy is consistent with the target image 90% of the time and will

correctly depict the specific semantic category of the target

image 40% of the time.

DISCUSSION

We have presented reconstructions of natural images from

BOLD fMRI measurements of human brain activity. These recon-

structions were produced by a Bayesian reconstruction frame-

work that uses two different encoding models to integrate infor-

mation from functionally distinct visual areas: a structural model
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that describes how information is represented in early visual

areas and a semantic encoding model that describes how infor-

mation is represented in anterior visual areas. The framework

also incorporates image priors that reflect the structural and

semantic statistics of natural images. The resulting reconstruc-

tions accurately reflect the spatial structure and semantic

content of the target images.

Relationship to Previous Reconstruction Studies
Two previous fMRI decoding papers presented algorithms for

reconstructing the spatial layout of simple geometrical patterns

composed of high-contrast flicker patches (Thirion et al., 2006;

Miyawaki et al., 2008). Both these studies used some form of

structural model that reflected the retinotopic organization of

early visual cortex, but neither explored the role of semantic

content or prior information. Our previous study on image

identification from brain activity (Kay et al., 2008) used a more

sophisticated voxel-based structural encoding model that

reflects the way that spatial frequency and orientation informa-

tion are encoded in brain activity measured in early visual areas.

However, the image identification task does not require the use

of semantic information.

The study reported here presents a solution to a more general

problem: reconstructing arbitrary natural images from fMRI

signals. It is much more difficult to reconstruct natural images

than flickering geometrical patterns because natural images

have a complex statistical structure and evoke signals with rela-

tively low signal to noise. Our study employed a structural

encoding model similar to that used in our earlier image identifica-

tion study (Kay et al., 2008), but we found that this model

is insufficient for reconstructing natural images, given the

fMRI signals collected in our study. Successful reconstruction

requires two additional components: a natural image prior and

a semantic model. The natural image prior ensures that potential

reconstructions will satisfy all of the lower- and higher-order

statistical properties of natural images. The semantic encoding

model reflects the way that informationaboutsemantic categories

is represented in brain responses measured in AOC. Our study is

the first to integrate structural and semantic models with a natural

image prior to produce reconstructions of natural images.

Under the Bayesian framework, each of the separate sources

of information used for reconstruction are represented by a

separate encoding model or image prior. This property of the

framework makes it an efficient method for integrating informa-

tion from disparate sources in order to optimize reconstruction.

For example, adding the semantic model to the reconstruction

process merely required adding an additional term to Equation 1.

However, this property also has value even beyond its use in

optimizing reconstructions. Because the sources of structural

and semantic information are represented by separate models,

the Bayesian framework makes it possible to disentangle the

contributions of functionally distinct visual areas and prior infor-

mation to reconstructing the structural and semantic content of

natural images (see Figure 6).

But Is This Really Reconstruction?
Reconstruction using the natural image prior is accomplished by

sampling from a large database of natural images. One obvious
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difference between this sampling approach and the methods

used in previous studies (Thirion et al., 2006; Miyawaki et al.,

2008) is that reconstructions will always correspond to an image

that is already in the database. If the target image is not con-

tained within the natural image prior then an exact reconstruction

of the target image cannot be achieved. The database used in

our study contains only six million images, and with a set this

small it is extremely unlikely that any target image (chosen

from an independent image set) can be reconstructed exactly.

However, as the size of the database (i.e., the natural image prior)

grows, it becomes more likely that any target image will be struc-

turally and/or semantically indistinguishable from one of the

images in the database. For example, if the database contained

many images of one person’s personal environment, it would be

possible to reconstruct a specific picture of her mother using

a similar picture of her mother. In this case, the fact that the

reconstruction was not an exact replica of the target image

would be irrelevant.

It is important to emphasize that in practice exact reconstruc-

tions are impossible to achieve by any reconstruction algorithm

on the basis of brain activity signals acquired by fMRI. This is

because all reconstructions will inevitably be limited by inaccur-

acies in the encoding models and noise in the measured signals.

Our results demonstrate that the natural image prior is a powerful

(if unconventional) tool for mitigating the effects of these funda-

mental limitations. A natural image prior with only six million

images is sufficient to produce reconstructions that are structur-

ally and semantically similar to a target image. There are many

other potential natural image priors that could be used for this

process, and some of these may be able to produce reconstruc-

tions even better than those demonstrated in this study. Explora-

tion of alternative priors for image reconstruction and other brain

decoding problems will be an important direction for future

research.

New Insights from the Semantic Encoding Model
Many previous fMRI studies have investigated representations

in the anterior regions of visual cortex, beginning in the region

we have defined as AOC and extending beyond the slice

coverage used here to more anterior areas such as the fusiform

face area and the parahippocampal place area (Kanwisher

et al., 1997; Epstein and Kanwisher, 1998). These anterior

regions are more activated by whole images than by scrambled

images (Malach et al., 1995; Grill-Spector et al., 1998), and

some specialized regions appear to be most activated by

specific object or scene categories (Kanwisher et al., 1997; Ep-

stein and Kanwisher, 1998; Downing et al., 2001; Downing

et al., 2006). A recent study using sophisticated multivariate

techniques revealed a rough taxonomy of object representa-

tions within inferior temporal cortex (Kriegeskorte et al.,

2008). Together, these studies indicate that portions of anterior

visual cortex represent information related to meaningful ob-

jects and scenes—what we have referred to here as ‘‘semantic

content.’’

This result forms the inspiration for our semantic encoding

model, which assigns a unique semantic category to each

natural image in order to predict voxel responses. This aspect

of the model permits us to address one very basic and important
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question that has not been addressed by previous studies: what

proportion of the variance in the responses evoked by a natural

image within a single voxel can be explained solely by the

semantic category of the image? Our results show that for voxels

in the region we have defined as AOC, semantic category alone

can explain as much as 55% of the response variance (see

Figure 5). An important direction for future research will be to

apply the semantic encoding model to voxels in cortical regions

that are anterior to our slice coverage. Recent work on

a competing model that is conceptually similar to our semantic

encoding model (Mitchell et al., 2008) suggests that the semantic

encoding model will be useful for predicting brain activity in these

more anterior areas.

The results in Figure 5 show that the particular structural

features used to build the structural encoding model are very

weakly correlated with semantic categories. However, it is

important to bear in mind that all semantic categories are corre-

lated with some set of underlying structural features. Although

structural features underlying some categories of natural land-

scape (Greene and Oliva, 2009) have been discovered, the struc-

tural features underlying most semantic categories are still

unknown (Griffin et al., 2007). Thus, it is convenient at this point

to treat semantic categories as a form of representation that is

qualitatively different from the structural features used for the

structural encoding model.

One notable gap in our current results is that neither the

structural nor semantic models can adequately explain voxel

responses in intermediate visual areas such as area V4 (see

Figure 5). These intermediate areas are thought to represent

higher-order statistical features of natural images (Gallant

et al., 1993). Because the structural model used here only

captures the lower-order statistical structure of natural images

(Field, 1987; Field, 1994) it does not provide accurate predictions

of responses in these intermediate visual areas. Development of

a new encoding model that accurately predicts the responses of

individual voxels in intermediate visual areas would provide an

important new tool for vision research and would likely further

improve reconstruction accuracy.

Future Directions
Much of the excitement surrounding the recent work on visual

reconstruction is motivated by the ultimate goal of directly

picturing subjective mental phenomena such as visual imagery

(Thirion et al., 2006) or dreams. Although the prospect of recon-

structing dreams still remains distant, the capability of recon-

structing natural images is an essential step toward this ultimate

goal. Future advances in brain signal measurement, the develop-

ment of more sophisticated encoding models, and a better

understanding of the structure of natural images will eventually

make this goal a reality. Such brain-reading technologies would

have many important practical uses for brain-augmented

communication, direct brain control of machines and com-

puters, and for monitoring and diagnosis of disease states.

However, such technology also has the potential for abuse.

Therefore, we believe that researchers in this field should begin

to develop ethical guidelines for the application of brain-reading

technology.
EXPERIMENTAL PROCEDURES

Data Collection

The MRI parameters, stimuli, experimental design, and data preprocessing are

identical to those presented in a previous publication from our laboratory (Kay

et al., 2008). Here, we briefly describe the most pertinent details.

MRI Parameters

All MRI data were collected at the Brain Imaging Center at UC-Berkeley, using

a 4 T INOVA MR (Varian, Inc., Palo Alto, CA) scanner and a quadrature

transmit/receive surface coil (Midwest RF, LLC, Hartland, WI). Data were

acquired in 18 coronal slices that covered occipital cortex (slice thickness

2.25 mm, slice gap 0.25 mm, field of view 128 3 128 mm2). A gradient-echo

EPI pulse sequence was used for functional data (matrix size 64 3 64, TR 1 s,

TE 28 ms, flip angle 20�, spatial resolution 2 3 2 3 2.5 mm3).

Stimuli

All stimuli were grayscale natural images selected randomly from several

photographic collections. The size of the images was 20� 3 20� (500 px 3

500 px). A central white square served as the fixation point(0.2� 3 0.2�;

4 px 3 4 px). Images were presented in successive 4 s trials. In each trial,

a photo was flashed at 200 ms intervals (200 ON, 200 OFF) for 1 s, followed

by 3 s of gray background.

Experimental Design

Data for the model estimation and image reconstruction stages of the experi-

ment were collected in the same scan sessions. Three subjects were used:

TN, KK, and SN. For each subject, five scan sessions of data were collected.

Scan sessions consisted of five model estimation runs and two image recon-

struction runs. Runs used for model estimation were 11 min each and consisted

of 70 distinct images presented two times each. Runs used for image recon-

struction were 12 min each and consisted of 12 distinct images presented

13 times each. Images were randomly selected for each run and were not

repeated across runs. The total number of distinct images used in the model

estimation runs was 1750. For image reconstruction runs, the total was 120.

Data Preprocessing

Functional brain volumes were reconstructed and then coregistered across

scan sessions. The time series data was used to estimate a voxel-specific

response time course; deconvolving this time course from the data produced,

for each voxel, an estimate of the amplitude of the response (a single value) to

each image used in the model estimation and image reconstruction runs. Ret-

inotopic mapping data collected in separate scan sessions was used to assign

voxels to their respective visual areas based on criteria presented in Hansen

et al. (2007).

Notation

All sections below use the same notational conventions. The response of

a single voxel is denoted r. Bold notation is used to denote the collected

responses of N separate voxels in an Nx1 voxel response vector: r =

(r1,.,rN)T. Subscripts i applied to voxel response vectors, ri, are used to distin-

guish between functionally distinct brain areas. In practice, images are treated

as vectors of pixel values, denoted s. These vectors are formed by columnwise

concatenation of the original 2D image; unless otherwise noted, s is a 1282 3 1

column vector.

Encoding Models

Our reconstruction algorithm requires an encoding model for each voxel. Each

encoding model describes the voxel’s dependence upon a particular set of

image features. Formally, this dependence is given by a distribution over the

possible responses of the voxel to an image: p(rjs). We presented two different

types of encoding models: a structural encoding model and a semantic encod-

ing model. Each model is defined by a transformation of the original image s

into a set of one or more features. For the structural encoding model, these

features are spatially localized orientations and spatial frequencies (which

can be described using Gabor wavelets). For the semantic model, these

features are semantic categories assigned to the images by human labelers.

The conditional distributions p(rjs) for both models are defined by one or

more Gaussian distributions. For the structural models, p(rjs) is a Gaussian

distribution whose mean is a function of the image s; for the semantic model,

p(rjs) is a weighted sum of Gaussian distributions, each of whose means is
Neuron 63, 902–915, September 24, 2009 ª2009 Elsevier Inc. 911
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a function of the image. Each model can be used to predict the specific

response of a voxel to an image by taking the expected value of r with respect

to p(rjs). Note that if a voxel has a very weak dependence on the features

assumed by the model, the expected value of r with respect to p(rjs) will poorly

predict the actual response of the voxel. Note also that both the structural and

semantic models have a number of free parameters that must be estimated

using a suitable fitting procedure.

Structural Encoding Model

The structural encoding model used in this work is similar to the Gabor

Wavelet Pyramid model described in our previous publication (Kay et al.,

2008). The model describes the spatial frequency and orientation tuning of

each voxel. These attributes can be efficiently described by Gabor wavelets.

A Gabor wavelet is a spatially localized filter with a specific orientation and

spatial frequency. To construct the structural encoding model, all images

are first filtered by a set of Gabor wavelets that cover many spatial locations,

orientation, frequencies, and scales. The filtered signals are then passed

through a fixed nonlinearity. This nonlinear transformation of the image

defines the feature set for the structural encoding model. Formally, the

features are defined as f(s) = log(jWTsj +1), where f is an F 3 1 vector con-

taining the features (F = 10,921, the number of wavelets used for the model),

and W denotes a matrix of complex Gabor wavelets. W has as many rows as

there are pixels in s, and each column contains a different Gabor wavelet;

thus, its dimension is 1282 3 10921. The features are the log of the magni-

tudes obtained after filtering the image by each wavelet. The log is applied

because we have found that a compressive nonlinearity improves prediction

accuracy.

The wavelets in W occur at six spatial frequencies: 1, 2, 4, 8, 16, and 32

cycles per field of view (FOV = 20�; images were presented at a resolution of

500 3 500 pixels but were downsampled to 128 3 128 pixels for this analysis).

At each spatial frequency of n cycles per FOV, wavelets are positioned on an

n 3 n grid that tiles the full FOV. At each grid position, wavelets occur at eight

orientations, 0�, 22.5�, 45�, ., and 157.5�. An isotropic Gaussian mask is used

for each wavelet, and its size relative to spatial frequency is such that all wave-

lets have a spatial frequency bandwidth of 1 octave and an orientation band-

width of 41�. A luminance-only wavelet that covers the entire image is also

included.

As mentioned above, the conditional distribution for the structural encoding

model is a Gaussian distribution whose mean is defined by a weighted sum of

the features f:

pðrjsÞfexp

 
�
�
r � hT fðsÞ

�2

2s2

!

where h (F 3 1) is the set of weighting parameters, and s (a scalar) is the stan-

dard deviation of voxel responses.

The encoding model’s predicted response to an image s is defined as the

mean response with respect to p(rjs). This mean is just the feature transform

(which is the same for all voxels) multiplied by the weighting parameters h

(which are fit independently for all voxels): bmðsÞ= hT fðsÞ.
Coordinate descent with early stopping was used to find the parameters h

that minimized the sum-of-square-error between the actual and predicted

responses. For each voxel, this minimization was performed on three sets of

M-l training samples (M = 1750, l = M*0.1), selected randomly without replace-

ment. Each set produced a separate estimate hj (j = [1, 2, 3]). h was set equal to

the arithmetic mean of (h1, h2, h3).

Semantic Encoding Model

The features used for the semantic encoding model are quite different from

those used for the structural encoding model. Instead of features that are

defined by a wavelet transformation, the features for the semantic model are

semantic categories assigned to each image by human labelers.

The semantic categories used for the model were drawn from a semantic

basis. The semantic basis is a set of categories designed to satisfy two key

properties. First, the categories are broad enough that any natural image

can be assigned to at least one of them. Second, categories in the semantic

basis are nonoverlapping, so that a human observer can confidently assign

any arbitrary image to only one of them. We developed the semantic basis

using a tree of categories, shown in Figure S1. In the first layer of the tree, all
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possible images are divided into mutually exclusive categories: ‘‘mostly

animate’’ and ‘‘mostly inanimate.’’ In subsequent layers, each category is

again divided into two or three exclusive categories. At the bottom of the

tree (rightmost layer in Figure S1) is a set of 23 categories; this is the semantic

basis. The inputs to the model are natural images that have been labeled with

one of these 23 categories by two human observers. The observers did not

know whether the images they labeled were target images, training images,

or potential reconstructions sampled from the natural image prior. Observers

were instructed to label each image by working their way down the semantic

tree: first they assigned the correct label from the first level, then the second

level, and so on until reaching the bottom of the tree. In a few cases the labels

assigned by different labelers were inconsistent, and in these cases they dis-

cussed the images between themselves in order to arrive at a consistent

conclusion.

The form of the conditional distribution for the semantic encoding model is

slightly more complex than for the structural model. In order to make the model

easily interpretable, we designed it so that it would clearly delineate the

semantic categories that a voxel likes (categories that are likely to evoke above

average responses), doesn’t like (categories that are likely to evoke below

average responses), or doesn’t care about (categories that are likely to evoke

near average responses). This clear delineation is achieved by decomposing

the overall voxel response distribution (the gray curves in the top panels of

Figure 4) into a mixture of subdistributions that span the above, below, and

near average response ranges:

pðrjcðsÞÞ=
X

z

pðrjzÞpðzjcðsÞÞ

where z ˛ [1,2,3] is an indicator variable used to delineate the ranges, and c(s)

denotes the semantic category assigned to the image s (This notation is used

throughout to make the model’s dependence on semantic categories explicit.

However, the more general notation used for the structural model, p(rjs), is

applicable here as well). Each of the subdistributions, p(rjz) is a Gaussian

(colored curves in top panels of Figure 4) with its own mean and variance,

mz and sz:

pðrjzÞfexp
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Each of these Gaussian subdistributions are weighted by a multinomial mixing

distribution, p(zjc(s)), that gives the probability that the voxel’s response will be

driven into response range z when presented with an image from category c

(bar charts in bottom panels of Figure 4).

The predicted response of the semantic model to an image s is the mean of

p(rjc(s)). This mean is a weighted sum of the means of each of subdistribution:

bmðcðsÞÞ= X
z

mzpðzjcðsÞÞ

The free parameters of the semantic encoding models are the mean and vari-

ance of p(rjz) for each value of z, and the parameters of the multinomial mixture

distribution p(zjc(s)). We estimated these parameters for each voxel using an

expectation maximization algorithm that we present in Appendix 1 (see

Supplemental Data).

Voxel Selection and Multivoxel Encoding Models

To perform reconstruction using the responses of many voxels, it is necessary

to first select a set of voxels for use in reconstruction and then combine the

individual encoding model for each selected voxel into a single multivoxel

encoding model for the entire set.

Voxels were selected for reconstruction on the basis of the predictive

accuracy of their encoding models. If the prediction accuracy of the structural

encoding model was above threshold (see below), it was considered a struc-

tural voxel, and it was used for all reconstructions that involved the structural

encoding model. If the prediction accuracy of the semantic encoding model

for a voxel was above threshold (see below) it was considered a semantic

voxel, and it was used for all reconstructions that involved the semantic encod-

ing model. In the rare cases where both the structural and the semantic encod-

ing models were above the selection thresholds for both models, the voxel was

used for both structural and semantic reconstruction.
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For the structural model, the threshold was a correlation coefficient of

>0.353. This correlation coefficient corresponds to a p value < 3.9 3 10�5,

which is roughly the inverse of the number of voxels in our data set. For the

semantic model, the threshold was a correlation coefficient of >0.26. This

correlation coefficient was chosen because it optimized semantic accuracy

on an additional set of 12 experimental trials obtained for subject TN (none

of these trials were part of the model estimation or image reconstruction

sets used here).

In order to control for a possible selection bias, the correlation values for

both the structural and semantic encoding models were calculated separately

for each of the image reconstruction trials. To reconstruct the jth image, the

correlation coefficients were calculated using the remaining 119 image recon-

struction trials. Thus, a slightly different set of voxels was selected for each

reconstruction trial. The average number of voxels selected by the structural

model was 788 (average taken across all three subjects and all reconstruction

trials). The average number of voxels selected by the semantic model was 579.

The average number of voxels selected by both was 73.

Once voxels were selected for each reconstruction trial, multivoxel versions

of the structural and semantic encoding models were constructed using the

univariate model for each of the selected voxels. The multivoxel versions of

the structural and semantic encoding models are given by the following distri-

bution:

pðrjsÞfexp
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where L is a covariance matrix. Let bm iðsÞ := hri jsi be the predicted response

for the ith voxel, given an image s (the predicted mean response for the struc-

tural and semantic encoding models are defined above). LetbmðsÞ= ðbm1ðsÞ;.; bmNðsÞÞT be the collection of predicted mean responses for

N voxels. We define br as the normalized predicted mean response vector:

brðsÞ= PT bmðsÞ
kPT bmðsÞk

where the sidebars denote vector normalization and the columns of the matrix

P contain the first p principal components of the distribution over bm (p = 45 for

the structural model; p = 21 for the semantic model. For all subjects and both

models, these values of p occur at or near the inflection point of the plot of

rank-ordered eigenvalues). The prime notation denotes the same linear trans-

formation and scaling of measured response vectors:

r0 =
PT r

kPT rk

To estimate P for the structural encoding model, we generated predicted mean

response vectors to a gallery of 12,000 natural images and applied standard

principal components analysis to this sample. For the semantic encoding

model, we used a smaller gallery of 3000 images labeled according to the

scene categories shown in Figure S1 (rightmost layer of the tree). The reduc-

tion of dimensionality achieved by projection onto the first p principal compo-

nents of the predicted responses, and the normalization after projection, act to

stabilize the inverse of the covariance matrix, L. The elements of L give the

covariance of the residuals (i.e., the difference between the responses and

predictions, r 0 � brðsÞ). We used the 1750 trials in the model estimation set to

estimate L.

General Reconstruction Algorithm

All of the reconstructions presented in the paper are special cases of a general

Bayesian algorithm, summarized by the following equation:

pðsjrÞfpðsÞ
Y

i

piðri jsÞ

On the left-hand side is the posterior distribution, p(sjr). The posterior gives

the probability that an image s evoked the measured response r. The goal

of reconstruction is to find the image with the highest posterior probability,

given the responses (this is often referred to as maximum a posteriori

decoding). The formula on the right-hand side shows how the posterior prob-
ability is calculated. The first term, p(s), is the image prior. It reflects pre-

existing, general knowledge about natural images and is independent of the

responses. We consider three separate priors in this study: the flat prior,

the sparse Gabor prior, and natural image prior. The image prior is followed

by a product of encoding models, pi, each of which is applied to the

responses, ri, of voxels in a functionally distinct brain area. To produce recon-

structions, we used either one (structural) or two (structural and semantic)

encoding models.

The four different reconstruction methods presented in the main text differ

only by the particular choice of priors and encoding models used to calculate

the posterior probability. For reconstructions that use the structural model and

a flat prior, the posterior is pðsjr1Þfp1ðr1jsÞ, where p1 is the structural encod-

ing model, and r1 are the structural voxels (selected according to the voxel

selection procedure defined above: see ‘‘Voxel Selection and Multivoxel En-

coding Models’’). Note that the image prior, p(s), does not appear here

because the flat prior is simply a constant that is independent of both images

and responses.

For reconstruction with the structural encoding model and sparse Gabor

prior, the posterior is p(s j r1) f p1(r1 j s) pSG(s), where pSG(s) is the sparse

Gabor prior described in detail below.

For reconstructions with the structural model and natural image prior,

the posterior is p(s j r1) f p1(r1 j s) pNIP(s), where pNIP(s) is the natural image

prior.

Finally, for the hybrid reconstructions, the posterior incorporates two encod-

ing models: p(s j r) f p1(r1 j s) p2(r2 j s)pNIP(s), where p2 is the semantic encod-

ing model, and r2 are the semantic voxels (selected according to the procedure

defined above: see ‘‘Voxel Selection and Multivoxel Encoding Models’’).

Once a posterior distribution is defined, a reconstruction is produced by

finding an image that has a high posterior probability. In general, it is not

possible to determine the image that maximizes the posterior distribution

analytically. Thus, a search algorithm must be applied to search the space

of possible images for potential reconstructions that have high posterior prob-

ability.

Reconstructions Using the Structural Encoding Model and a Flat

Prior

For the reconstructions presented in the second column of Figure 2, a set of

voxels located primarily in the early visual areas V1, V2, and V3 (see above

for explanation of how these voxel were selected) and a multivoxel structural

encoding model were used.

The prior used for this type of reconstruction was the trivial or ‘‘flat’’ prior:

p(s) = constant.

This prior assigns the same value to all possible images, including those with

randomly selected pixel values. In this case, the posterior probability p(sjr),
and the likelihood, p(rjs), are proportional.

To produce reconstructions, a greedy serial search algorithm was used to

maximize the posterior distribution. At each iteration of the algorithm, a small

group of pixel values in the reconstruction was updated. If the newly updated

pixel values increased the posterior probability, they were retained as part of

the reconstructed image. Otherwise, they were rejected. The procedure halted

when the change in posterior probability remained below a small threshold

(4 bits) for a number of iterations. A formal description of the procedure is given

in Appendix 2 (see Supplemental Data).

Reconstructions Using the Structural Encoding Model and a Sparse

Gabor Prior

For the reconstructions presented in the third column of Figure 2, we used the

same selected voxels and structural encoding model as above (see ‘‘Recon-

structions Using the Structural Encoding Model and a Flat Prior’’). Instead of

a flat prior, we used a sparse Gabor prior. The sparse Gabor prior places

high probability on images that have the 1/f amplitude spectrum characteristic

of natural images. In other words, this prior prefers images in which nearby

pixels are somewhat correlated. The distribution also assigns high probability

to images that are sparse in the Gabor wavelet domain. Suppose that a = Gs is

the transformation of an image s into the Gabor domain, where G is a matrix of

real-valued Gabor wavelets, and a = (a1, ., ag), is a vector whose elements, ai,
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denote the ‘‘activation’’ of the ith Gabor wavelet in G. To say that images are

‘‘sparse’’ in the Gabor domain means that their Gabor activations obey a distri-

bution with a sharp peak and a steep falloff (in other words, a distribution with

high kurtosis). This aspect of natural images was captured using a Laplace

distribution:

pðaiÞ=
1

2bi

exp

�
�
����ai � ui

bi

�����
where ui, and bi determine the mean and variance of the distribution.

To generate an image from the sparse Gabor prior, activations for all of

the wavelets in the Gabor basis G are sampled independently from the above

Laplace. The activations are then linearly transformed back into the pixel

domain to obtain an image. Finally, this image is transformed again by an

‘‘unwhitening’’ matrix, U, and offset by ms, the mean of all natural images:

s = UG-1a + ms.

Effectively, the application of U smooths the image so that it possesses the

1/f structure characteristic of natural images.

The Laplace distribution, along with the transformation from Gabor activa-

tions into the pixel domain, together define an explicit formula for the sparse

Gabor prior:

pSGðsÞ=
Z
a

pðsjaÞpðaÞda

where p(s j a) =1 whenever s = UG�1a + ms and is set to zero otherwise. The

Gabor activations are assumed to be independent of each other, so

pðaÞ=
Y

i

pðaiÞ:

This equation is just a formal way of stating that under the sparse Gabor

prior, the probability of sampling an image s is proportional to the probability

of sampling its underlying Gabor activations a. (Note that this model has

a number of free parameters that must be chosen or estimated empirically.

Explicit formulas for estimating these parameters are given in Appendix 3 of

the Supplemental Data.)

Reconstructions with the structural model and sparse Gabor prior were

generated using a search algorithm identical to the one used for reconstruction

with a flat prior, except that in this case, reconstructions were updated at each

iteration of the algorithm by incrementing the activation for a single Gabor by

±0.1. The updated reconstruction was transformed into pixel space, and its

posterior probability was evaluated using the sparse Gabor prior.

Reconstructions Using the Structural Encoding Model and a Natural

Image Prior

To produce the reconstructions shown in the fourth column of Figure 2, the

second column of Figure 3, and Figure S3A, we used the structural encoding

model and corresponding structural voxels. Instead of a sparse Gabor prior,

we used an implicit natural image prior, pNIP(s). Informally, the natural image

prior is simply a large (6 million samples) database of natural images. Formally,

it is a distribution that assigns a fixed value to all the images in the database,

and a zero value to all images that are not:

pNIPðsÞ=
1

C

XC

i = 1

dsðiÞ ðsÞ

where C is the total number of images in the database, and dsðiÞ is the delta

function that returns 1 whenever s = s(i) (the ith image in the database) and

a 0 otherwise.

Reconstruction was performed by simply evaluating the posterior proba-

bility for each of the images in the database [note that for images in the natural

image prior, the posterior is proportional to the likelihood p(r j s)] and choosing

the one that resulted in the highest posterior probability. Evaluating the poste-

rior is computationally intensive. As a time-saving approximation, we first eval-

uated each image in the database using the voxel-wise correlation between

the measured responses and the responses predicted by the encoding model.

This metric was used in Kay et al. (2008) for image identification. For each

target image, we retained the 100 images with the highest correlation. We
914 Neuron 63, 902–915, September 24, 2009 ª2009 Elsevier Inc.
then evaluated each of these 100 images under p (s j r). The image with the

highest p (s j r) was retained as the reconstruction.

Reconstructions Using the Structural Encoding Model, the Semantic

Encoding Model, and the Natural Image Prior (Hybrid Method)

To produce reconstructions shown in the third column of Figure 3 (and in

Figure S3B) the posterior probabilities were evaluated for each of the images

in the natural image prior using both the structural encoding model and the

semantic encoding model. Reconstruction using this hybrid method was per-

formed for 30 of the image reconstruction trials (all of these were from the first

scan session).

To evaluate the semantic encoding model for a given image s, the image

must be assigned a semantic category from the semantic basis set (Figure S1).

Because it is not feasible to label all 6 million images in the natural image prior,

we labeled only those images with relatively high likelihoods under the struc-

tural encoding model. For a single reconstruction trial this set of images was

defined as Sr = {s : s ˛ S, and p1(r1 j s) > br}, where S is the database of images.

br was chosen so that Sr contained 100 images.

Reconstruction Accuracy

Structural Accuracy

Structural accuracy of the reconstructions was assessed using the weighted

complex wavelet structural similarity metric (Brooks and Pappas, 2006). The

metric uses the coefficients of a complex wavelet decomposition of two

images in order to compute a single number describing the degree of structural

similarity between the two images. To produce the structural accuracy metrics

in Figure 6 (left panels), the similarity between each target image and its recon-

struction was averaged across all 120 reconstruction trials. (For the case of the

hybrid method, averages were taken over the smaller set of 30 reconstruc-

tions.) Note that this metric is not the same as the posterior probability of an

image. Thus, a rank-ordering of images according to this metric may not

perfectly correspond to a rank-ordering of images according to their posterior

probabilities (as in Figure S3).

Semantic Accuracy

To assess the semantic accuracy of the reconstructions, the probability of

a semantic category, a, given a response, r, was calculated for each of the

30 reconstruction trials used for the hybrid method. If the most probable cate-

gory was also the category of the target image, the trial was considered to be

semantically accurate. Semantic accuracy for each type of reconstruction

(Figure 6, right panels) is the fraction of semantically accurate reconstruction

trials.

The probability of a semantic category given a response, p(a j r), is calcu-

lated via a linear operation on the encoding models:

pðajrÞfpðaÞ
X
s ˛Sr

pðrjsÞpðsjaÞ

where p(rjs) can refer to either the structural encoding model, the semantic

encoding model, or the product of the two (as in Equation 1). The distribution

p(s j a) is the probability of an image, given a category. This probability was

set to 0 if the image was not a member of the category, and a constant value

otherwise. The prior on categories, p(a), was assumed to be flat. Thus, the

above equation has a very intuitive explanation: the probability of a semantic

category given a response is proportional to the average likelihood of all the

images from that category within a subset (Sr; see above for definition) of

the database.

SUPPLEMENTAL DATA

Supplemental Data include four figures and three mathematical appendices

and can be found with this article online at http://www.cell.com/neuron/

supplemental/S0896-6273(09)00685-0.
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