
Q

Kriegeskorte—Transformations of Lamarckism

Understanding Visual Representation by Developing Receptive-Field 
Models

Kendrick N. Kay

Summary

To study representation in the visual system, researchers typically adopt one of two 
approaches. The first approach is tuning curve measurement, in which the researcher 
selects a stimulus dimension and then measures responses to specialized stimuli that 
vary along that dimension. Stimulus dimensions can range from low-level dimen-
sions, such as contrast, to high-level dimensions, such as object category. The second 
approach is multivariate pattern classification, in which the researcher collects the 
same type of data as in the tuning-curve approach but uses these data to train a 
statistical classifier that attempts to predict the dimension of interest from measured 
responses. This approach has recently become quite popular in functional magnetic 
resonance imaging (fMRI).

In this chapter, we argue that the tuning curve and classification approaches suffer 
from two critical problems: first, these approaches presuppose that individual stimu-
lus dimensions can be cleanly isolated from one another, but careful consideration 
of stimulus statistics reveals that isolation is in fact quite difficult to achieve; second, 
these approaches provide no means for generalizing results to other types of  
stimulus. We then describe receptive-field estimation, an alternative approach that 
addresses these problems. In receptive-field estimation, the researcher measures 
responses to a large number of stimuli drawn from a general stimulus class and then 
develops receptive-field models that describe how arbitrary stimuli are mapped 
onto responses. Although receptive-field estimation is traditionally associated with 
electrophysiology, we review recent work of ours demonstrating the application of 
this technique to fMRI of primary visual cortex. The success of our approach sug-
gests that receptive-field estimation may be a promising direction for future fMRI 
studies.
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Conventional Approaches for Studying Visual Representation

What Is the Goal in Studying Visual Representation?

The primate visual system is composed of several dozen distinct areas, each of which 
plays a unique role in the processing of visual input. The standard way to character-
ize the role played by a given visual area is to detail the properties, or dimensions, 
of the stimulus that modulate activity in that area (Van Essen and Gallant, 1994). 
For example, it is well established that activity in primary visual cortex is modulated 
by simple low-level stimulus dimensions such as orientation and spatial frequency 
(Lennie and Movshon, 2005). In contrast, activity in inferior temporal cortex is 
thought to be modulated by complex dimensions that are far removed from the raw 
visual input, such as object category and object position (Op de Beeck, Haushofer, 
and Kanwisher, 2008). We stipulate that the goal in studying visual representation 
is to determine what stimulus dimensions modulate activity in each visual area. 
(Most researchers would probably accept this definition.)

The Tuning-Curve Measurement Approach

The simplest and most common approach for studying visual representation is 
tuning curve measurement (figure 5.1a). This approach has its roots in classic elec-
trophysiological studies (Hubel and Wiesel, 1959; Campbell, Cooper, and Enroth-
Cugell, 1969) and is often used in functional magnetic resonance imaging (fMRI) 
(Wandell, 1999; Grill-Spector and Malach, 2004). In the tuning-curve approach, the 
researcher first selects a stimulus dimension believed to be relevant to a given brain 
area. The researcher then designs specialized stimuli that vary along the dimension 
of interest and measures responses to these stimuli. Finally, the researcher builds a 
tuning curve model that links different points along the dimension of interest to 
responses from each unit (e.g., neuron, voxel, or region-of-interest). The main objec-
tive of the tuning-curve approach is to demonstrate that responses in a given brain 
area are modulated by the dimension of interest.

The tuning-curve approach covers a wide range of studies (figure 5.2). For example, 
consider an fMRI study in which voxel responses are averaged across a region-of-
interest and then two or more experimental conditions are contrasted, such as faces 
versus houses (Epstein and Kanwisher, 1998; Ishai et al., 1999). This type of study 
implicitly uses a simple tuning curve model that assigns a separate value to each 
point along the dimension of interest (for example, a value of 5 could be assigned 
to “face” and a value of 2 could be assigned to “house”). As another example, con-
sider retinotopic mapping studies in which responses of individual voxels to a large 
number of contrast-defined images are measured (Wandell, Dumoulin, and Brewer, 
2007). Some of these studies use relatively sophisticated tuning curve models, such 
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Figure 5.1
Different approaches for studying visual representation. (a) Tuning curve measurement. This approach 
involves measuring responses to stimuli that vary along a specific dimension and then building a tuning 
curve model that links different points along the dimension of interest to responses from each unit (e.g., 
neuron, voxel, or region-of-interest). The tuning curve model is usually a simple model that associates a 
separate value with each point along the dimension of interest, but can be more sophisticated (see figure 
5.2). The main objective of tuning curve measurement is to demonstrate that the dimension of interest 
modulates responses in a given brain area. (b) Multivariate pattern classification. This approach involves 
measuring responses to stimuli that vary along a specific dimension and then building a classification 
model that uses responses from multiple units to predict which point along the dimension of interest is 
present. Like the tuning-curve approach, the classification approach seeks to demonstrate that the dimen-
sion of interest modulates responses in a given brain area. However, the classification approach enjoys 
greater statistical power because responses from multiple units are simultaneously taken into account. 
(c) Receptive-field estimation. This approach involves measuring responses to a large number of stimuli 
drawn from a general stimulus class and then building receptive-field models that describe how arbitrary 
stimuli are mapped onto responses from each unit. Unlike tuning curve models, receptive-field models 
formalize stimulus dimensions such that the dimensions can be computed for arbitrary stimuli (see figure 
5.4). The objective of receptive-field estimation is to develop models that explain as much variance in 
responses as possible.
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as a model that takes a spatial pattern of contrast (e.g., a binary image where 0 
represents zero contrast and 1 represents full contrast) and filters this pattern with 
a two-dimensional Gaussian function in order to generate a predicted response 
(Larsson and Heeger, 2006; Thirion et al., 2006; Dumoulin and Wandell, 2008).

The Multivariate-Pattern Classification Approach

A recently developed approach for studying representation is multivariate pattern 
classification (figure 5.1b). This approach was initially used in fMRI to investigate 
the representation of object categories in ventral temporal cortex (Haxby et al., 
2001; Cox and Savoy, 2003), but has since been applied to many other types of study, 
including studies of low-level stimulus dimensions such as orientation (Haynes and 
Rees, 2005; Kamitani and Tong, 2005) and electrophysiological studies (Hung et al., 
2005; Tsao et al., 2006).

The initial steps in multivariate pattern classification are identical to those in 
tuning curve measurement: the researcher selects a stimulus dimension, designs 
specialized stimuli that vary along that dimension, and measures responses to these 
stimuli. However, the classification approach analyzes the resulting data in a differ-
ent way. In the first stage of the analysis, a subset of the data is used to train a clas-
sification model that uses responses from multiple units to predict which point along 

Figure 5.2
Tuning curve models can vary widely in complexity. (a) Model of object category tuning. Suppose we 
measure responses to objects drawn from two categories, faces and houses. In this case, the dimension 
of interest is defined on a nominal scale and we can construct a simple tuning curve model that assigns 
a separate value to each category (Epstein and Kanwisher, 1998; Ishai et al., 1999). (b) Model of contrast 
tuning. Suppose we measure responses to an image presented at different levels of contrast. In this case, 
the dimension of interest is defined on a ratio scale and we can construct a slightly more sophisticated 
tuning curve model that takes a contrast value and passes it through a nonlinear function to generate a 
predicted response (Albrecht and Hamilton, 1982; Boynton et al., 1999; Carandini and Sengpiel, 2004). 
(c) Model of spatial tuning. Suppose we measure responses to contrast-defined images that vary in con-
trast across the visual field (see figure 5.3). In this case, we can construct a sophisticated tuning curve 
model that takes a spatial pattern of contrast, multiplies this pattern with a two-dimensional Gaussian 
function, and then sums over the result to generate a predicted response (Larsson and Heeger, 2006; 
Thirion et al., 2006; Dumoulin and Wandell, 2008).
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the dimension of interest is present. For example, one might imagine training a 
support vector machine that uses responses from a set of 100 voxels to predict which 
of two grating orientations is present. In the second stage of the analysis, a separate 
subset of the data is used to evaluate the accuracy of the classification model. Using 
a separate subset controls for overfitting and ensures an unbiased estimate of 
accuracy.1

Multivariate pattern classification and tuning curve measurement are similar in 
that both approaches attempt to demonstrate that a dimension of interest modulates 
responses in a brain area by building a model that relates different points along the 
dimension of interest to observed responses. However, in the tuning-curve approach, 
the model is directed from the dimension of interest to the observed responses, 
whereas in the classification approach, the model is directed from the observed 
responses to the dimension of interest. Another difference concerns the number of 
units involved. The tuning-curve approach builds a separate model for each unit, 
whereas the classification approach builds a single model that incorporates responses 
from multiple units. The ability to incorporate responses from multiple units pro-
vides the classification approach with increased statistical power compared to the 
tuning-curve approach (Haynes and Rees, 2005; Kamitani and Tong, 2005).

Problems with Conventional Approaches

Although the tuning curve and classification approaches can reveal valuable insight 
into representation, they face two critical problems. The first is that response modu-
lations presumed to be caused by the dimension of interest could in fact be caused 
by some other dimension correlated with the dimension of interest. For example, 
suppose we are interested in the dimension of object category and we measure 
responses in a given brain area to images of animals, buildings, and tools. If we find 
selectivity for buildings, can we conclude unequivocally that the brain area is tuned 
for object category? No, because it is possible that the brain area is actually tuned 
for some other dimension correlated with object categories. For instance, buildings 
might have greater power at vertical orientations compared to animals and tools, 
and the brain area might simply be tuned for vertical orientations.

The usual strategy for dealing with the problem of correlated dimensions is to 
design stimuli such that unwanted dimensions are controlled for. For example, when 
designing stimuli that depict objects from different categories, it is typical to equalize 
the size and position of the objects (for example, Kiani et al., 2007; Kriegeskorte  
et al., 2008). However, careful consideration of stimulus statistics reveals that it is 
actually quite difficult to design stimuli that perfectly isolate a single stimulus 
dimension; rather, it is common for a set of stimuli to vary along multiple dimensions 
(figure 5.3). Thus, in general, efforts to control stimuli can reduce the severity of the 
problem of correlated dimensions but cannot completely eliminate the problem.
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Figure 5.3
Stimuli typically vary along multiple stimulus dimensions. The tuning curve and classification approaches 
involve designing specialized stimuli that probe specific stimulus dimensions. However, a fundamental 
problem with this strategy is that in general it is not possible to cleanly separate different stimulus dimen-
sions from one another. Thus, an effect that is presumed to be caused by a certain dimension may actually 
be caused by other, unconsidered dimensions. To illustrate, in this figure we analyze a variety of stimulus 
types with respect to several basic dimensions. For each stimulus type, we quantify the amount of image-
to-image variation along the dimension of luminance (mean of image pixels), contrast (standard devia-
tion of image pixels), space (standard deviation of image pixels within each element of an 8 × 8 grid), 
orientation (average spectral power within each of eight orientation bins), and spatial frequency (average 
spectral power within each of nine spatial frequency bins). (For full details on methods, please see the 
appendix.) The area of each square indicates the amount of image-to-image variation, and the squares 
have been scaled such that the maximum square size in each column is the same. The results demonstrate 
that different stimulus types typically do not isolate single dimensions but instead probe multiple dimen-
sions simultaneously.
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The second problem faced by the tuning curve and classification approaches is 
that these approaches investigate stimulus dimensions without providing a formal 
description of how to compute the dimensions for arbitrary stimuli. This lack of 
formalization makes it difficult to take results obtained using one type of stimulus 
and to generalize them to other types of stimulus. For example, suppose we are 
interested in the dimension of curvature and we measure responses while para-
metrically varying the angle formed by two line segments (Pasupathy and Connor, 
1999; Hegde and Van Essen, 2000; Ito and Komatsu, 2004). This type of stimulus is 
convenient because we can simply define curvature as the magnitude of the angle 
formed by the line segments. However, this definition is specific to stimuli consisting 
of two line segments, and it is unclear how to generalize results to other types of 
stimulus.

The Receptive-Field Estimation Approach

What Is a Receptive Field?

The concept of a receptive field was introduced by electrophysiologists in the mid–
twentieth century (Hartline, 1938; Kuffler, 1953; Hubel and Wiesel, 1959) and con-
tinues to play a central role in our understanding of the visual system. The term 
“receptive field” is often used to refer to the region of the visual field within which 
stimuli evoke responses from a given neuron. Other times, the term is used to refer 
to the specific linear spatiotemporal filter that characterizes the functional behavior 
of a given neuron (for example, the receptive field of a retinal ganglion cell is 
approximately a center-surround filter). In both cases the core function of a recep-
tive field is to characterize the circumstances under which a given unit responds to 
visual stimuli. We therefore propose the following more general definition: a recep-
tive field is any computational model that describes how arbitrary stimuli are trans-
formed into responses from a given unit. Notice that this generalized definition is 
applicable to any visual area and to any unit of measurement (e.g., neuron, voxel, 
region-of-interest).

Receptive-field models provide a formal description of how stimulus dimensions 
are linked to brain responses. For example, consider a receptive-field model  
that applies a Gabor filter to the stimulus in order to generate a predicted response. 
This model formalizes the dimensions of orientation, spatial frequency, and  
contrast such that they can be computed for arbitrary stimuli, and it integrates these 
dimensions into a single description of how stimuli are mapped onto responses 
(figure 5.4).
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What Is Receptive-Field Estimation?

Receptive-field estimation is an approach to studying visual representation that 
focuses on developing and testing receptive-field models, and has been used in many 
electrophysiological studies over the years (see Felsen et al., 2005; Rust et al., 2005; 
Touryan, Felsen, and Dan, 2005; Bonin, Mante, and Carandini, 2006; David, Hayden, 
and Gallant, 2006; Nishimoto, Ishida, and Ohzawa, 2006; Rust et al., 2006; Schwartz 
et al., 2006; Sharpee et al., 2006; Butts et al., 2007; Cadieu et al., 2007; Chen et al., 
2007; Mante, Bonin, and Carandini, 2008; Pillow et al., 2008). In essence, receptive-
field estimation treats visual representation as a regression problem where the goal 
is to construct a model that uses stimuli to explain variance in observed responses 
(Wu, David, and Gallant, 2006).

In receptive-field estimation (figure 5.1c), the researcher first measures responses 
to a large number of stimuli drawn from a general stimulus class. The researcher 
then develops one or more receptive-field models and uses a subset of the data to 
estimate the free parameters of these models. Finally, the researcher uses a separate 
subset of the data to evaluate the accuracy of the models. Using a separate subset 
controls for overfitting and ensures that models with different numbers of free 
parameters can be compared fairly.

Figure 5.4
Receptive-field models formalize and integrate stimulus dimensions. Suppose we measure tuning curves 
for the dimensions of orientation, spatial frequency, and contrast. Although these tuning curves provide 
useful information, it remains unclear how to predict responses to stimuli that differ from those used to 
measure the tuning curves. Now consider a receptive-field model that applies a Gabor filter to the stimu-
lus in order to generate a predicted response. This simple model performs two vital functions. One, the 
model formalizes the dimensions of orientation, spatial frequency, and contrast such that they can be 
computed for arbitrary stimuli. Two, the model integrates the dimensions into a single description of how 
stimuli are mapped onto responses.
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The prototypical example of receptive-field estimation is white-noise reverse cor-
relation, a procedure in which white noise is used to drive a neuron and the correla-
tion between each pixel and the response of the neuron is computed (Jones and 
Palmer, 1987a; Chichilnisky, 2001). This procedure in effect fits a linear receptive-
field model in which the predicted response is taken to be a weighted sum of pixels. 
Note, however, that receptive-field estimation is not limited to linear models nor to 
simple, mathematically convenient stimuli such as white noise; for example, non
linear receptive-field models have been developed using responses to complex 
natural images (Prenger et al., 2004; Touryan, Felsen, and Dan, 2005; David, Hayden, 
and Gallant, 2006).

Receptive-Field Estimation Addresses Problems with Conventional Approaches

Receptive-field estimation addresses each of the two problems that affect the tuning 
curve and classification approaches. First, consider the problem of correlated  
dimensions. In receptive-field estimation, there is no need to construct stimuli  
that isolate individual stimulus dimensions. Rather, the researcher is free to use 
stimuli that vary along a variety of dimensions. To decide which of several dimen-
sions best explains responses in a given brain area, the researcher formalizes each 
dimension into a receptive-field model and finds the model with the highest accu-
racy. Notice that this strategy is effective even if there exist correlations between 
dimensions.

Next, consider the problem of generalization. Unlike tuning curve and classifica-
tion models, receptive-field models formalize stimulus dimensions and provide com-
plete specifications of the mapping between stimulus and response. Thus, 
receptive-field models are not tied to any particular type of stimulus and can in 
principle predict responses to arbitrary stimuli. Of course, how well in practice a 
given receptive-field model generalizes to novel stimuli is contingent on the  
stimuli and the amount of data used to estimate the model and the extent to which 
the brain area under consideration manifests nonlinearities not captured by the 
model.

Receptive-Field Estimation Assesses the Relative Importance of Stimulus 
Dimensions

In the tuning curve and classification approaches, stimuli are specifically designed 
to emphasize a dimension of interest while minimizing the influence of other dimen-
sions. Thus, even if we find that the dimension of interest substantially modulates 
responses in a given brain area, we do not gain a sense of how important the dimen-
sion is relative to other dimensions. However, the issue of importance can be easily 
addressed under the approach of receptive-field estimation. Here, stimuli are 

8404_005.indd   141 5/27/2011   7:36:45 PM



Q

Kriegeskorte—Transformations of Lamarckism

142	 Kendrick N. Kay

sampled from a general stimulus class (for example, natural images) and are not 
tailored for any particular stimulus dimension. We can therefore obtain an unbiased 
assessment of the importance of a given dimension by simply quantifying the amount 
of variance in responses that the dimension accounts for.

Challenges in Receptive-Field Estimation

The main challenge in receptive-field estimation is the difficulty of developing new 
receptive-field models. This difficulty stems from the fact that formalizing stimulus 
dimensions is not a trivial task: although certain low-level dimensions such as con-
trast are well understood and can be easily formalized, other dimensions such as 
object shape are understood only at a conceptual level, and formalization of these 
dimensions remains a challenging endeavor. To gain ideas for new receptive-field 
models, it may be useful to examine computational models developed in other fields 
such as theoretical neuroscience (for example, Olshausen and Field, 1996; Bell and 
Sejnowski, 1997; Berkes and Wiskott, 2005; Cadieu and Olshausen, 2009; Hyvärinen, 
Hurri, and Hoyer, 2009; Karklin and Lewicki, 2009) and computer vision (for 
example, Lowe, 1999; Martin, Fowlkes, and Malik, 2004; Serre et al., 2007; Pinto  
et al., 2009).

Another difficulty is that only a limited amount of data can be collected in a given 
experiment, making it difficult to estimate receptive-field models with many  
free parameters. To compensate for limited data, it is useful to optimize the quality 
of the data that are in fact collected. This can be accomplished through a variety  
of means, such as carefully controlling the behavioral and attentional state of  
the subject; reducing non-neuronal sources of noise such as head motion in  
fMRI studies; and optimizing in real-time the stimuli used in an experiment (Benda 
et al., 2007; Yamane et al., 2008; Lewi, Butera, and Paninski, 2009). Another  
strategy for dealing with data limitations is to incorporate prior knowledge about 
the brain area under investigation, thereby reducing the amount of information that 
the data have to convey. This can be accomplished either by reducing the complexity 
of a model before parameter estimation (for example, restricting a model to a spe-
cific region of the visual field) or by using maximum a posteriori methods for 
parameter estimation (Wu, David, and Gallant, 2006; Paninski, Pillow, and Lewi, 
2007).

Application of Receptive-Field Estimation to fMRI

Gabor Wavelet Pyramid Model of Voxels in Primary Visual Cortex

Although receptive-field estimation has been traditionally restricted to electro-
physiology, there is no intrinsic reason that this must be the case. Indeed, emerging 
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research indicates the viability of using other measurement techniques such as 
optical imaging (Baker and Issa, 2005; Mante and Carandini, 2005; Basole et al., 
2006) and fMRI (Bartels, Zeki, and Logothetis, 2008; Dumoulin and Wandell, 2008; 
Kay et al., 2008a; Kriegeskorte et al., 2008; Miyawaki et al., 2008; Naselaris et al., 
2009) to develop models of visual representation that are more sophisticated than 
simple tuning curve or classification models.2 Here we review recent work of ours 
demonstrating the application of receptive-field estimation to fMRI (Kay et al., 
2008a; see also Naselaris et al., 2009).

Because receptive-field estimation is not a standard approach in fMRI, we started 
off by targeting a relatively well-understood brain area, primary visual cortex (V1). 
Electrophysiological studies indicate that there are two major functional classes of 
neurons in V1, simple cells and complex cells. To a first approximation, a simple cell 
can be modeled as a single half-wave rectified Gabor filter, and a complex cell can 
be modeled as the sum of several half-wave rectified Gabor filters (Movshon, 
Thompson, and Tolhurst, 1978a, 1978c; Daugman, 1980; Adelson and Bergen, 1985; 
Jones and Palmer, 1987b). We reasoned that if the activity in a V1 voxel reflects the 
pooled activity of a large number of simple and complex cells, then it should be 
possible to model a V1 voxel as a population of half-wave rectified Gabor filters 
(figure 5.5). We term this model the Gabor model.4

Figure 5.5
Gabor wavelet pyramid receptive-field model. In Kay et al. (2008a), we measured fMRI activity in early 
visual areas while subjects viewed a large number of grayscale natural images. We then devised a 
receptive-field model that could potentially characterize the mapping between visual stimuli and voxel 
responses. In the model, the stimulus image is first filtered with a diverse set of Gabor filters occurring 
at different positions, orientations, spatial frequencies, and phases. The filter outputs are then half-wave 
rectified, weighted by a set of free parameters, and summed together.3 Finally, a DC offset is added, 
producing the predicted response. This model is based on standard models of V1 neurons (Ringach, 2004; 
Carandini et al., 2005) and is suitable for characterizing the pooled activity of a large population of V1 
neurons.

8404_005.indd   143 5/27/2011   7:36:45 PM



Q

Kriegeskorte—Transformations of Lamarckism

144	 Kendrick N. Kay

Accuracy of the Gabor Model

To validate the use of receptive-field estimation in fMRI, we sought to confirm that 
the Gabor model accurately characterizes voxel responses in V1. To this end we 
measured fMRI activity (4 T, surface coil, GE-EPI, 2 × 2 × 2.5 mm3, 1 Hz) in early 
visual areas while subjects passively viewed a large number of grayscale natural 
images. For each subject two sets of data were acquired: a training dataset that 
consisted of 1,750 images presented 2 times each and a validation dataset that con-
sisted of 120 images presented 13 times each. For each voxel, a response timecourse 
(see Kay et al., 2008b) was estimated and deconvolved from the time-series data, 
producing an estimate of the amplitude of the response to each distinct image.

We fit the Gabor model to each voxel by applying gradient descent with early 
stopping to the data in the training dataset (Skouras, Goutis, and Bramson, 1994). 
(Gradient descent with early stopping imposes a shrinkage prior on model param-
eters and is an example of a maximum a posteriori method for parameter estima-
tion; see section 2.5.) We then assessed the accuracy of the Gabor model by 
calculating the amount of variance in the validation dataset that is explained by the 
model. To obtain a realistic assessment of model accuracy, we expressed this amount 
as a percentage relative to the amount of variance that a perfect model could in 
principle explain, given the level of noise in the validation dataset (Sahani and 
Linden, 2003; David and Gallant, 2005).

We found that in V1 the Gabor model accounts for approximately 70 percent of 
the explainable variance (figure 5.6). This high value is consistent with our under-
standing of V1 derived from electrophysiology, and it helps validate the use of 
receptive-field estimation in fMRI. To gain additional insight into the Gabor model, 
we also examined results in extrastriate visual areas. Neurons in extrastriate areas 
are thought to be tuned for features more complex than Gabor-like features (Van 
Essen and Gallant, 1994; Carandini et al., 2005; Orban, 2008), and we expected that 
the Gabor model would not perform as well in these areas as it does in V1. Indeed, 
we found that the accuracy of the Gabor model decreases progressively from V1 to 
V2 to V3 to V4 (figure 5.6).

Consistency of the Gabor Model with Neuronal Tuning Properties

The Gabor model characterizes a V1 voxel as the sum of a large number of Gabor 
filters (potentially thousands), each of which represents a population of V1 neurons 
that share tuning for a particular position, phase, orientation, and spatial frequency 
(figure 5.7). To determine whether this characterization is accurate, we investigated 
whether the specific sets of Gabor filters that comprise our V1 voxel models  
are consistent with existing knowledge of the organization and function of V1 
neurons.
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Figure 5.6
Accuracy of the Gabor model. For each voxel, we fit the Gabor model using responses in a training 
dataset and then assessed how accurately the model predicts responses in a separate validation dataset. 
(a) Model accuracy as a function of signal-to-noise ratio. In this panel, voxels are binned by signal-to-
noise ratio (defined as the ratio between the amount of variance in responses due to the stimulus and 
the amount of variance in responses due to all other factors). For each bin the median correlation (r) 
between measured and predicted responses is plotted. Error bars indicate ± 1 standard error, and the 
dotted line indicates the noise ceiling, that is, the theoretical maximum performance that can be achieved 
given the level of noise in the data. (b) Model accuracy in terms of percent explainable variance. We 
replot the results shown in panel a, expressing the amount of variance explained by the Gabor model 
(r 2) as a percentage relative to the amount of variance that a perfect model could in principle explain. 
In V1, the Gabor model accounts for approximately 70 percent of the explainable variance.
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Figure 5.7
Visualization of the receptive field of a representative voxel. (a) Spatial envelope. The receptive field 
(RF) estimate displayed in this panel was obtained by applying the Gabor model to the full extent of 
the stimulus (20° × 20°). The intensity of each pixel indicates the sensitivity of the RF to that location 
in the visual field, the white circle indicates the bounds of the stimulus, and the gray square indicates the 
estimated RF location. The results show that the RF is spatially localized in the upper-right quadrant of 
the visual field. (b) Direct visualization of filters. The RF estimate displayed in this panel was obtained 
by applying the Gabor model to the estimated RF location. Each individual image corresponds to the 
estimated RF location and depicts filters that have a specific orientation and phase but a variety of posi-
tions and spatial frequencies. The root-mean-square intensity of each filter is proportional to the weight 
associated with that filter. The results show that filters are mainly excitatory and are broadly distributed 
across orientation, position, and phase. (c) Orientation and spatial frequency tuning curves. To summarize 
the tuning properties of the RF estimate shown in panel b, orientation and spatial frequency tuning 
curves were constructed. This was accomplished by computing the predicted response of the RF to 
sinusoidal gratings varying in orientation and spatial frequency. The results show that selectivity for 
orientation is somewhat weaker than selectivity for spatial frequency.

We first considered the dimension of space. In V1, nearby neurons are tuned for 
nearby positions in the visual field, and there exists a large-scale retinotopic mapping 
of the visual field onto the cortical surface (Van Essen, Newsome, and Maunsell, 
1984; Tootell et al., 1988; Wandell, Dumoulin, and Brewer, 2007). Consistent with 
these observations, we found that the Gabor filters that contribute to a V1 voxel 
model tend to cluster together (for example, see figure 5.7a) and that the spatial 
tuning of our V1 voxel models successfully reproduces the retinotopic organization 
of V1 (see results in Kay et al., 2008a).

Next, we considered the dimension of orientation. Although individual V1 neurons 
are highly selective for orientation, neurons in V1 are organized such that a full 
range of orientations is represented over a scale (0.5–1 mm in the macaque; see 
Hubel and Wiesel, 1974; Blasdel and Salama, 1986) substantially smaller than  
the size of the voxels in our experiment (2 × 2 × 2.5 mm3). Thus, we expect to find 
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only weak biases in orientation tuning at the voxel level (Haynes and Rees, 2005; 
Kamitani and Tong, 2005). Orientation tuning curves derived from our voxel models 
are indeed consistent with this expectation (figure 5.8a).

Finally, we considered the dimension of spatial frequency. Neurons in V1 exhibit 
band-pass spatial frequency tuning and cover a limited range of spatial frequencies 
(Schiller, Finlay, and Volman, 1976; Movshon, Thompson, and Tolhurst, 1978b; De 
Valois, Albrecht, and Thorell, 1982; Foster et al., 1985; Shapley and Lennie, 1985). Thus, 
even though a V1 voxel contains a wide assortment of neurons, we still expect to find 
strong band-pass spatial frequency tuning at the voxel level. Furthermore, it is known 
that neurons in V1 exhibit an overall decrease in preferred spatial frequency as 
receptive-field eccentricity increases (Schiller, Finlay, and Volman, 1976; De Valois, 
Albrecht, and Thorell, 1982). Consistent with these several observations, we found that 
spatial frequency tuning curves derived from our voxel models are generally band-pass 
and shift toward lower spatial frequencies at peripheral eccentricities (figure 5.8b).

Figure 5.8
Summary of orientation and spatial frequency tuning. We constructed orientation and spatial frequency 
tuning curves for V1 voxels for which the accuracy (r) of the Gabor model was significantly greater than 
0 (p < 0.01, one-tailed randomization test). (a) Orientation tuning. To summarize results for orientation, 
we aligned the peaks of the orientation tuning curves and then averaged the tuning curves together. The 
result is shown, with error bars indicating ± 1 standard error. The fact that the averaged tuning curve is 
quite broad in shape indicates that voxel orientation tuning is at most a small effect (Haynes and Rees, 
2005; Kamitani and Tong, 2005). (b) Spatial frequency tuning. To summarize results for spatial frequency, 
we grouped voxels according to eccentricity and then averaged the spatial frequency tuning curves of 
voxels in each group. The resulting tuning curves have been scaled to the same height for display pur-
poses, and error bars indicate ± 1 standard error. Notice that the tuning curves are generally band-pass 
and that peak spatial frequency decreases as eccentricity increases (Sasaki et al., 2001; Henriksson et al., 
2008).

8404_005.indd   147 5/27/2011   7:36:46 PM



Q

Kriegeskorte—Transformations of Lamarckism

148	 Kendrick N. Kay

Evaluation of Alternative Models

In order for receptive-field estimation in fMRI to be a useful approach, it must be 
possible to use fMRI data to discriminate competing receptive-field models. We 
therefore formulated several alternative models to compare against the Gabor 
model. Three of the models use the same framework as the Gabor model but involve 
different types of filters. The Pixel model uses individual pixels as filters and thus 
characterizes the response from a voxel as a weighted sum of half-wave rectified 
pixel filters. The Gaussian model uses two-dimensional Gaussians varying in size 
and position as filters. The Fourier model uses two-dimensional basis functions 
derived from the discrete Fourier transform as filters (David, Vinje, and Gallant, 
2004). The last model that we formulated, the Energy model, characterizes the 
response from a voxel as a weighted sum of the luminance- and contrast-energy of 
the image (calculated as the half-wave rectified mean and standard deviation  
of pixel values, respectively). This model is similar to recently proposed models of 
phase-encoded retinotopic mapping data (Larsson and Heeger, 2006; Thirion et al., 
2006; Dumoulin and Wandell, 2008).

We evaluated each of the receptive-field models using the same methods described 
earlier. To ensure robust model comparison, each model was applied to the specific 
region of the visual field corresponding to the estimated receptive-field location for 
each voxel. We observed the following trend in model accuracy for voxels in V1: 
Pixel < Gaussian < Energy < Fourier < Gabor (figure 5.9). The fact that the Gabor 
model outperforms alternative models demonstrates that it is possible to use fMRI 
data to evaluate and discriminate competing receptive-field models. Post-hoc analy-
ses indicate that differences in model accuracy arise primarily from differences in 
how well each model characterizes voxel spatial frequency tuning (results not 
shown). This is reasonable, given our earlier observation that voxel spatial frequency 
tuning is a strong effect (see figure 5.8).

Advantages of Using fMRI for Receptive-Field Estimation

The measurement technique traditionally associated with receptive-field estimation 
is electrophysiology. What advantages can using fMRI for receptive-field estimation 
offer? First, fMRI provides simultaneous measurements of activity from multiple 
brain areas. This enables large datasets to be collected relatively quickly and offers 
the prospect of using a single dataset to investigate representation in different brain 
areas. Second, in principle there is no limit to the amount of data that can be col-
lected from a voxel since data can be combined across scan sessions. This is favorable 
because model accuracy is often limited by the amount of data available for estima-
tion of model parameters. Third, since fMRI is noninvasive, it can be readily applied 
to human subjects. This could facilitate the investigation of the impact of attention 
and other cognitive factors on representation.
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Figure 5.9
Evaluation of alternative models. We formulated several alternative models to compare against the 
Gabor model. Each model was fit and tested using the same methods used for the Gabor model. In this 
figure, bar height indicates median accuracy across voxels in V1, and error bars indicate ± 1 standard 
error. The Gabor model achieves the highest accuracy, consistent with V1 electrophysiology. More gener-
ally, these results demonstrate that it is possible to use fMRI data to discriminate competing receptive-
field models.

However, fMRI suffers from a critical disadvantage, namely, limited spatial  
resolution. Despite advances in imaging hardware and techniques, the spatial resolu-
tion that can be currently achieved in fMRI while maintaining good coverage  
and adequate signal-to-noise ratio is relatively low, with voxel sizes on the order of 
2 × 2 × 2 mm3 (at moderate field strength). At this resolution, each voxel pools 
the activity of hundreds of thousands of neurons, making it difficult to infer func-
tional properties of individual neurons based on fMRI data. Receptive-field models 
developed in fMRI should therefore be interpreted with respect to what electro-
physiology reveals about functional properties at the neuronal level.

The Prospects of Receptive-Field Estimation in Future fMRI Studies

The Case of Ventral Temporal Cortex

Given the feasibility of applying receptive-field estimation to fMRI in V1, we believe 
that this approach has the potential to improve our understanding of representation 
throughout the visual system. In this section we speculate on the specific case of 
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ventral temporal cortex, since this region of the brain and its various subregions 
(e.g., lateral occipital complex, fusiform face area) are intensely studied by many 
laboratories.

At first glance, our understanding of ventral temporal cortex seems well devel-
oped, since it appears we have already identified object category as the stimulus 
dimension that primarily modulates responses in this region (Malach, Levy, and 
Hasson, 2002; Grill-Spector, 2003; Kiani et al., 2007; Op de Beeck, Haushofer, and 
Kanwisher, 2008). Indeed, current research tends to take for granted the idea that 
object category is the fundamental stimulus dimension, and instead focuses on the 
secondary issue of how object categories are topographically organized in the brain 
(Op de Beeck et al., 2008; Op de Beeck, Haushofer, and Kanwisher, 2008).

However, we contend that our understanding of ventral temporal cortex is in fact 
quite rudimentary, since object category is a poorly understood stimulus dimension. 
To illustrate, suppose we construct a tuning curve for contrast by selecting an image, 
globally scaling the image pixel values to various degrees, and measuring responses 
to the resulting stimuli. And suppose we construct a tuning curve for object category 
by selecting different object categories and measuring the average response to 
objects drawn from each category. Although these two situations are superficially 
similar, there is a critical difference. In the case of contrast, response modulations 
can be attributed to a concrete, definitive property of the stimulus (the spread in 
the distribution of pixel values). But this is not the case for object category, since 
the critical stimulus property that varies from one category to the next is unknown. 
Thus, while our understanding of contrast is strong, our understanding of object 
category is weak.

It is tempting to think that we understand the dimension of object category given 
the effortlessness with which we, as human observers, recognize objects in our 
everyday lives. But we must be careful not to confuse this superficial understanding 
of object category with the in-depth understanding that a formal description of 
object category would provide. Such a description is exactly what we hope to obtain 
by applying receptive-field estimation to ventral temporal cortex.

Developing Receptive-Field Models for Ventral Temporal Cortex

There are several approaches that could be used to develop receptive-field models 
for ventral temporal cortex. One approach is to take existing computational models 
of object recognition and adapt these models such that they can be fit to responses 
measured from the brain (for an example, see Cadieu et al., 2007). In this respect, 
receptive-field estimation can be viewed as a method for incorporating theoretical 
models into an experimental setting.

A second approach is to start with a high-level theory of visual processing and 
then attempt to translate the theory into a concrete receptive-field model. For 
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example, selectivity for object category has been hypothesized to reflect semantic 
properties of objects (Chao, Haxby, and Martin, 1999), specialized processing for 
certain object categories such as faces (Kanwisher, 2000), form and shape charac-
teristics associated with different object categories (Haxby et al., 2000; Tanaka, 
2003), the level at which objects from a given category are processed (Gauthier, 
2000; Tarr and Gauthier, 2000), and the eccentricity at which objects from a given 
category are typically viewed (Malach, Levy, and Hasson, 2002). Translating these 
theories into receptive-field models and testing the resulting models would be an 
extremely valuable enterprise.

A final, bottom-up approach for developing receptive-field models is to scrutinize 
what is already known regarding ventral temporal cortex. For example, studies 
investigating the dimension of object category typically use single, pre-segmented 
objects (Haxby et al., 2001; Cox and Savoy, 2003; Hung et al., 2005; Kiani et al., 2007; 
Kriegeskorte et al., 2008); this simplified setup neglects complexity inherent in real-
world natural scenes such as background clutter, multiple objects, and partially 
occluded objects. Specifying how the dimension of object category can be computed 
for complex natural scenes would be a useful step toward the development of 
receptive-field models. As another example, it is known that in addition to object 
category, object position also modulates responses in ventral temporal cortex (Levy 
et al., 2001; DiCarlo and Maunsell, 2003; MacEvoy and Epstein, 2007; Sayres  
and Grill-Spector, 2008; Schwarzlose et al., 2008). Thus, a useful starting point for 
developing receptive-field models would be to brainstorm potential computational 
mechanisms that can simultaneously describe tuning along these two dimensions.

Final Thoughts

To be clear, we do not mean to imply that it will be easy to build receptive-field 
models that accurately characterize responses in ventral temporal cortex, or any 
other visual area for that matter. Indeed, a major advantage of conventional 
approaches such as tuning curve measurement is that these approaches are rela-
tively straightforward to carry out and invariably provide some insight into the 
computations performed by a given area. Nevertheless, we contend that our under-
standing of visual representation remains fundamentally limited until we develop 
and test receptive-field models for the various visual areas in the brain.
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Appendix: Calculation of Stimulus Statistics for Different Types of Stimulus

In figure 5.3, we depict the amount of image-to-image variation along several stimu-
lus dimensions for a variety of stimulus types. Here we describe the methods used 
to obtain these results.

Stimuli were prepared as 64 × 64 grayscale images with pixel values in the range 
0 (black) to 1 (white). Five hundred samples of each stimulus type were generated, 
unless otherwise indicated.

•  Luminance modulation (Rossi, Rittenhouse, and Paradiso, 1996; Kinoshita and 
Komatsu, 2001; Haynes, Lotto, and Rees, 2004; Peng and Van Essen, 2005; Cornelis-
sen et al., 2006) consisted of a uniform image whose luminance was varied from 
black to white in 100 equally spaced increments.
•  Contrast modulation (Albrecht and Hamilton, 1982; Boynton et al., 1999; Avidan 
et al., 2002; Carandini and Sengpiel, 2004; Kastner et al., 2004) consisted of a radial 
checkerboard pattern whose contrast was varied from 1 percent to 100 percent in 
100 equally spaced increments.
•  Dense noise (Victor et al., 1994; Reid, Victor, and Shapley, 1997; Chichilnisky, 2001; 
Olman et al., 2004; Nishimoto, Ishida, and Ohzawa, 2006) was generated by drawing 
pixel values randomly from a uniform distribution.
•  Sparse noise (Jones and Palmer, 1987a; DeAngelis, Ohzawa, and Freeman, 1993) 
was generated by setting a randomly chosen element of a 16 × 16 grid to black or 
white and setting the other elements to neutral gray.
•  Bar noise (Lau, Stanley, and Dan, 2002; Touryan, Lau, and Dan, 2002; Rust et al., 
2005) consisted of vertical bars (one-pixel wide) whose luminance values were ran-
domly set to black or white.
•  Sinusoidal gratings (Geisler and Albrecht, 1997; Singh, Smith, and Greenlee, 2000; 
Albrecht et al., 2002; Mazer et al., 2002; Ringach, 2002) were constructed at full 
contrast and had randomly chosen orientations, spatial frequencies (in the range 1 
to 25 cycles per image), and phases.
•  Contrast-defined images (Thirion et al., 2006; Miyawaki et al., 2008) consisted of 
a 4 × 4 grid where each element was randomly set to neutral gray (zero contrast) 
or filled with an underlying checkerboard pattern (full contrast). The underlying 
checkerboard pattern consisted of alternating black and white squares defined on 
a 16 × 16 grid.
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•  Angles (Pasupathy and Connor, 1999; Hegde and Van Essen, 2000; Ito and Komatsu, 
2004) consisted of two white line segments placed on a neutral-gray background. 
Each line segment emanated from the center of the image at a random angle, and 
had a width of 4 pixels and a length of 29 pixels.
•  Moderately complex silhouettes (Pasupathy and Connor, 2001, 2002; Brincat and 
Connor, 2004) were prepared by rendering the 366 images depicted in figure 2 of 
Pasupathy (2006) at full contrast.
•  Pre-segmented objects (Haxby et al., 2001; Cox and Savoy, 2003; Hung et al., 2005; 
Kiani et al., 2007; Kriegeskorte et al., 2008) were prepared by downsampling the 92 
images used by Kriegeskorte et al. (2008) and then converting these images to 
grayscale.
•  Natural images (Rainer et al., 2001; Smyth et al., 2003; Weliky et al., 2003; David, 
Vinje, and Gallant, 2004; Olman et al., 2004) consisted of image patches randomly 
extracted from the photographs used in Kay et al. (2008a). Each image patch was 
scaled such that pixel values spanned the range 0 to 1.
•  Phase coherence modulation (Rainer et al., 2001; Dakin et al., 2002; Kayser et al., 
2003; Tjan, Lestou, and Kourtzi, 2006; Perna et al., 2008) consisted of a single natural 
image whose phase spectrum was blended with a random phase spectrum (excluding 
the DC component). The amount of blending varied from 0 percent to 100 percent 
in 100 equally spaced increments, and blending was performed linearly with respect 
to phase angle. After blending, the entire image ensemble was scaled such that pixel 
values spanned the range 0 to 1.
•  Image scrambling (Kanwisher, McDermott, and Chun, 1997; Lerner et al., 2001; 
Rainer et al., 2002; Tsao et al., 2006) consisted of a single natural image that was 
subjected to various degrees of scrambling. Scrambling was performed by partition-
ing the image according to a 1 × 1, 2 × 2, 4 × 4, 8 × 8, or 16 × 16 grid and then 
randomly shuffling the resulting image segments.

Images were quantified with respect to the dimensions of luminance, contrast, 
space, orientation, and spatial frequency. Luminance and contrast were quantified 
by computing the mean and standard deviation of image pixels, respectively. For 
space, orientation, and spatial frequency, the procedure was slightly more compli-
cated. In order to ensure that variations in space, orientation, and spatial frequency 
do not simply reflect changes in overall image contrast, the images associated  
with each stimulus type were scaled such that the contrast of each image matched 
the average contrast of the original, unscaled images. Then, after this contrast-
normalization procedure, the dimension of space was quantified by partitioning 
each image according to an 8 × 8 grid and then computing the standard deviation 
of image pixels in each of the resulting image segments. The dimensions of  

8404_005.indd   153 5/27/2011   7:36:46 PM



Q

Kriegeskorte—Transformations of Lamarckism

154	 Kendrick N. Kay

orientation and spatial frequency were quantified by calculating the power spectrum 
of each image and then computing the mean power in each of eight orientation bins 
(centered at 0°, 22.5°, ... , and 157.5°) and each of nine spatial frequency bins (1–6, 
6–11, ... , and 41–46 cycles per image).

For each stimulus type the amount of image-to-image variation with respect to 
each of the various dimensions was calculated. This was accomplished by interpret-
ing the quantification of a given dimension as defining a metric space and then 
computing the average Euclidean distance between pairs of images randomly 
selected from the given stimulus type. For example, suppose we wish to calculate 
the amount of image-to-image variation in orientation for natural images. To do this 
we first quantify orientation for each natural image; this in effect produces a cloud 
of points residing in an eight-dimensional space. We then compute the average 
Euclidean distance between pairs of points randomly selected from this cloud.

Notes

1.  We have termed the approach multivariate pattern classification, since predicting discrete classes 
is most common in the literature. However, whether discrete or continuous quantities are predicted  
is not critical, and our treatment of multivariate pattern classification applies just as well to the  
case where continuous quantities are predicted (such a case could be termed multivariate pattern 
regression).

2.  Some of these studies involve approaches that are either identical to or closely related to receptive-
field estimation; however, not all of the studies can be characterized in that way. A full description of the 
studies and how they relate to the three basic approaches of tuning curve measurement, multivariate 
pattern classification, and receptive-field estimation is outside the scope of this paper, but we briefly 
describe here one notable study (Kriegeskorte et al., 2008). In this study, responses to an assortment of 
real-world objects were measured and then multivariate dimensionality-reduction techniques (see also 
Gallant et al., 1996; Op de Beeck et al., 2001; Hegde and Van Essen, 2007; Kiani et al., 2007; Brouwer 
and Heeger, 2009) were used to visualize and discover the stimulus dimensions important to the various 
brain areas under consideration. The study also evaluated how well various receptive-field models 
accounted for the observed results. Receptive-field models were not evaluated with respect to how well 
they characterize responses from individual brain units (as we propose in this paper), but were instead 
evaluated with respect to how well they reproduce the similarity structure of the objects (similarity was 
computed by correlating response patterns obtained for different objects).

3.  Although the model described here uses half-wave rectified Gabor filters, the model in the published 
study (Kay et al., 2008a) involves computing the square root of the sum of the squares of quadrature-
phase Gabor filters. Nevertheless, these two models yield very similar results, and we adopt the former 
model in order to simplify the presentation.

4.  There are two caveats to our proposed interpretation of the Gabor model. The first caveat is that 
standard models of V1 neurons are based on the spiking behavior of neurons whereas the blood 
oxygenation level dependent (BOLD) signal measured in fMRI is coupled to synaptic activity, not 
spiking activity per se (Lauritzen, 2001; Heeger and Ress, 2002; Bartels et al., 2008; Logothetis, 2008). 
However, spiking activity is likely to be highly correlated with synaptic activity in the case of simple 
sensory stimulation (Scannell and Young, 1999; Heeger and Ress, 2002; Kim et al., 2004). It is therefore 
reasonable to assume that the same stimulus properties that drive spiking activity also drive synaptic 
activity. The second caveat is that the relationship between neural activity and the strength of the sub-
sequent BOLD response may not be entirely linear (Heeger and Ress, 2002; Logothetis and Wandell, 
2004; Lauritzen, 2005). However, nonlinearity does not invalidate the basic interpretation of the Gabor 
model: under certain reasonable assumptions, a nonlinear relationship between neural activity and the 
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BOLD response can be incorporated into the Gabor model by simply applying a nonlinear transforma-
tion to the output of each filter in the model. Preliminary results indicate that applying a compressive 
exponent (e.g., 0.5) to filter outputs leads to an increase in the accuracy of the Gabor model for V1 voxels. 
This is consistent with the existence of a compressive relationship between neural activity and the BOLD 
response (Logothetis et al., 2001; Logothetis and Wandell, 2004).
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