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Summary

Ventral temporal cortex (VTC) is the latest stage of the
ventral ‘‘what’’ visual pathway, which is thought to code

the identity of a stimulus regardless of its position or size

[1, 2]. Surprisingly, recent studies show that position infor-
mation can be decoded from VTC [3–5]. However, the

computational mechanisms by which spatial information is
encoded in VTC are unknown. Furthermore, how attention

influences spatial representations in human VTC is also
unknown because the effect of attention on spatial repre-

sentations has only been examined in the dorsal ‘‘where’’ vi-
sual pathway [6–10]. Here, we fill these significant gaps

in knowledge using an approach that combines functional
magnetic resonance imaging and sophisticated computa-

tional methods. We first develop a population receptive field
(pRF) model [11, 12] of spatial responses in human VTC.

Consisting of spatial summation followed by a compressive
nonlinearity, this model accurately predicts responses of in-

dividual voxels to stimuli at any position and size, explains
how spatial information is encoded, and reveals a functional

hierarchy in VTC. We then manipulate attention and use our
model to decipher the effects of attention. We find that atten-

tion to the stimulus systematically and selectively modu-
lates responses in VTC, but not early visual areas. Locally,

attention increases eccentricity, size, and gain of individual
pRFs, thereby increasing position tolerance. However, glob-

ally, these effects reduce uncertainty regarding stimulus
location and actually increase position sensitivity of distrib-

uted responses across VTC. These results demonstrate that
attention actively shapes and enhances spatial representa-

tions in the ventral visual pathway.

Results

Does a pRF Model Predict Responses in VTC?
To develop a model of how spatial information is encoded
in ventral temporal cortex (VTC), we measured fMRI re-
sponses (3T, 2-mm voxels) in a series of face-selective regions
[13] while subjects fixated centrally and viewed images of
faces that varied systematically in position and size (Fig-
ure 1A). We used face-selective regions as a model system
as they are a highly studied subsystem of VTC [3, 14, 15]
with awell-understood functional organization that is anatomi-
cally consistent across subjects [13, 16]. After estimating
and denoising stimulus-evoked responses [17], we modeled

responses in each voxel using the compressive spatial sum-
mation (CSS) model [12]. The CSS model characterizes the
population receptive field (pRF) [11] of a voxel and predicts
the response to a face by first computing the spatial overlap
between the face and an isotropic 2D Gaussian and then
applying a compressive nonlinearity (Figure 1B). Cross-valida-
tion analyses demonstrate that the CSS model accurately
characterizes responses of individual voxels in face-selective
regions located on the inferior occipital gyrus (IOG), posterior
fusiform gyrus (pFus), and mid-fusiform gyrus (mFus) [13]
and successfully predicts responses to faces at novel posi-
tions and sizes (Figures 1C and S1A). To assess whether these
results are specific to face stimuli, we also performed mea-
surements using phase-scrambled faces. Although phase-
scrambled faces evokeweaker responses and produce noisier
pRF estimates, pRF properties are largely invariant to stimulus
type (Figures S1B and S1C).

What Is the Nature of pRFs in VTC?
Similar to early and intermediate visual areas [11, 12], pRF
size increaseswith eccentricity in face-selective regionswithin
VTC (Figures 2A and S2B), suggesting that size-eccentricity
scaling is a pervasive organizing principle across the ventral
visual pathway. However, different from earlier visual areas,
pRFs in face-selective regions are quite large compared to
their eccentricity. Consequently, these pRFs extend substan-
tially into the ipsilateral visual field (Figure 2B). Also, unlike
pRFs in earlier areas, pRFs in face-selective regions are
consistently centered near the fovea, producing a representa-
tional scheme in which nearly all neural resources are dedi-
cated to the central portion of the visual field (approximately
the central 7�; see Figures 2B and S2A). This convergence of
spatial coverage is consistent with the foveal bias of face-se-
lective regions [14, 15]. Notably, this organization is different
from the distributed tiling of visual space in earlier retinotopic
visual regions [18], suggesting unique computational strate-
gies in VTC. Interestingly, pRF properties vary hierarchically
across face-selective regions: anterior regions in VTC gener-
ally have larger and more foveal pRFs than posterior regions
(Figures 2A and S2C), features also observed in monkey infe-
rotemporal cortex (IT) [19–22].

How Are pRF Properties Affected by Attention?

To understand the contribution of top-down attentional sig-
nals to the observed results, we measured pRFs under
different attentional states. While maintaining central fixation,
subjects performed one of three tasks: digit task (one-back
task on rapid serial presentation of digits at fixation), dot
task (detection of a red dot appearing on the faces; same as
the first experiment), and face task (one-back task on the iden-
tity of the faces; see Supplemental Experimental Procedures
and Figure S3A). In the digit task, attention is directed toward
fixation, whereas in the dot and face tasks, attention is
directed toward the faces.
Comparing pRF properties across tasks, we find no

substantial changes in pRF properties in early visual areas
V1–V3 (Figures 3A and S3C). However, in hV4 and, more
substantially, in face-selective regions, voxel responses are
strongly modulated by the task (Figure S3B). In these regions,*Correspondence: kendrick@post.harvard.edu
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pRFs exhibit increased eccentricity, size, and gain when sub-
jects attend to the faces (dot and face tasks) compared to
when they attend to fixation (digit task) (Figures 3A–3C). These
effects are consistent with the concept of response enhance-
ment at the attended location [23], and the effects are large in
size: for example, in mFus, comparing pRF properties across
the digit and face task, respectively, the median pRF eccen-
tricity increases from 1.3� to 1.9�, the median pRF size in-
creases from 1.8� to 3.4�, and the median pRF gain increases
from 0.83% to 1.32%.

Control experiments reveal that changes in pRF properties
are observed even if tasks are interleaved on a trial-by-trial ba-
sis (Figure S3G), indicating that the changes cannot be attrib-
uted to variation in general subject arousal across tasks.
Furthermore, performing the digit task on digits presented to
the left of fixation produces leftward shifts of pRFs in hV4,
IOG, and pFus compared to performing the digit task on
central digits (Figure S3H). This indicates that even though
attention is drawn away from faces during the digit task, pRF
modulations occur in a manner consistent with response
enhancement at the attended location, irrespective of the con-
tent of the attended stimulus.

Interestingly, attentional effects in face-selective regions are
stronger for the face task, which specifically requires per-
ceptual processing of the faces, compared to the dot task
(p < 1029, two-tailed sign test in each region for each pRFprop-
erty). Increases in pRF size under the dot and face tasks rela-
tive to the digit task are particularly intriguing as they indicate
that locally, at the voxel level, attention to the stimulus in-
creases the position tolerance of the neural representation.

What Is the Benefit of Attentional Modulation of pRFs?

Although we have demonstrated local changes in pRF proper-
ties as a result of attention, an open question is whether
these attention-induced changes are beneficial to the global,
or distributed, representation of the stimulus. Specifically,
we ask the following question: does attention affect the ability
of a collection of pRFs to discriminate the location of the
stimulus? This question cannot be answered through simple
summary statistics of pRF properties (such as the ones in Fig-
ure 3A) because discrimination performance depends not only
on the properties of individual pRFs but also on how the pRFs
collectively tile the visual field. For example, large but overlap-
ping pRFs might discriminate stimulus locations better than
small, non-overlapping pRFs [24]. We therefore designed a
model-based decoding analysis that quantifies the spatial
discrimination performance of a collection of pRFs. In this
analysis, we calculate spatial uncertainty, that is, the distance
over which changes in stimulus position cannot be well
discriminated based on the distributed responses across the
pRFs (thus, low spatial uncertainty indicates good discrimina-
tion performance). We applied this analysis separately to each
region, analyzing the pRFs observed under each task.
As expected from the stability of pRF properties in early vi-

sual areas, there is little change in spatial uncertainty in these
areas across tasks (Figure 4A, top). In all tasks, spatial uncer-
tainty in V1–V3 is less than 0.5� near the fovea (1� eccentricity)
and less than 1.5� in the periphery (5� eccentricity) (Figures 4B
and 4C). In contrast, there are large changes in spatial uncer-
tainty in face-selective regions across tasks. In the periphery,
spatial uncertainty is substantially reduced under the dot task

A B

C

Figure 1. Compressive Spatial Summation Accurately Models Responses in VTC

(A) Stimuli. Subjects viewed faces while fixating centrally. Faces varied systematically in position (centers indicated by yellow dots) and size (sizes indicated

by yellow circles). During each trial, face position and size were held constant while face identity and viewpoint were dynamically updated.

(B) Compressive spatial summation (CSS) model. The response to a face is predicted by computing the spatial overlap between the face and a 2DGaussian

and then applying a compressive power-law nonlinearity. The model includes two parameters (x, y) for the position of the Gaussian, a parameter (s) for the

size of the Gaussian, a parameter (n) for the exponent of the nonlinearity, and a parameter (g) for the overall gain of the predicted responses.

(C) Example voxel (left IOG, subject 1). Top row: responses arranged spatially according to face position. Bottom row: responses arranged serially for better

visualization of measurement reliability and goodness of fit of CSS model. Blood-oxygenation-level-dependent (BOLD) response magnitudes (black bars;

median across trials6 68% confidence interval [CI]) are accurately fit by the model (green line). Note that a single set of model parameters accounts for the

full range of the data.

See also Figure S1.
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(1.9-fold reduction, on average, across face-selective regions)
and the face task (2.7-fold reduction, on average, across
regions) compared to the digit task (Figure 4A, bottom; Fig-
ure 4C). For example, in mFus, uncertainty in the periphery is
more than 3� under the digit task but only about 1� under the
face task (Figure 4C). Importantly, these improvements are
not simply due to increased pRF gain: improvements are
still observed if pRF gain is held constant and only the task-
induced changes in pRF location and size are considered (Fig-
ure S4A). These results indicate that attending the stimulus
either explicitly (face task) or implicitly (dot task) reduces
uncertainty with respect to the location of the stimulus. As a
complement to our model-based decoding analysis, we also
performed direct decoding of the distributed response pat-
terns evoked by faces with no intervening modeling step.
Results are consistent with our model-based analysis: in
face-selective regions, there is improved decoding of face
position in the periphery under the face task compared to
the digit and dot tasks (Figures S4B and S4C).

Discussion

The experiments in the present study reveal that spatial repre-
sentations are prevalent in the ventral ‘‘what’’ visual pathway.
First, we have shown that responses in VTC are modulated by
changes in the position and size of the stimulus. These modu-
lations are systematic and are accurately characterized by a
pRF model utilizing spatial summation and a compressive
nonlinearity. Second, spatial representations within VTC are
actively shaped by top-down task demands. Specifically,
attention modulates pRFs in high and intermediate levels of
the ventral pathway, but not early visual regions. While prior
research has shown that spatial attention shifts receptive
fields in the dorsal ‘‘where’’ visual pathway [6–9, 25], as well
as intermediate visual areas in the ventral pathway [23, 26–
28], we extend these results to high-level areas in the ventral
pathway for the first time.

Attentional Effects in the Ventral Visual Pathway
The observed attentional modulations of pRFs are consistent
with the theory that neural responses in visual cortex reflect
the combination of bottom-up stimulus drive and a top-down

attentional field that enhances responses to stimuli at the
current locus of attention [23, 26, 29]. While both implicit (dot
task) and explicit (face task) attention toward faces lead to
response enhancement, we find that explicit attention toward
faces produces larger modulations (see Figure 3A). This sug-
gests that responses in the ventral visual pathway are modu-
lated by both spatial and object-based attention, consistent
with recent demonstrations of category-based attentional
effects in the ventral pathway [30]. An interesting subject for
future work is examining whether the attentional modulations
observed here can be quantitatively described as an inter-
action between a global attentional field [7, 10, 23] and local
classical receptive fields. Recent data suggest that the
effect of a global attentional field on pRFs depends on pRF
size, with larger effects obtained for larger pRFs [10]. Thus,
these models predict larger attentional shifts of pRFs at
higher stages of the visual processing hierarchy. We facilitate
efforts to examine such questions and to further develop
attentional models by making our data publicly available
(http://kendrickkay.net/vtcdata/).
One question that stems from our findings is whether the

demonstrated impact of attention on cortical responses has
behavioral consequences. We hypothesize that attention-
induced changes in the representation of spatial information
in VTC may affect behavioral judgments of spatial position.
Specifically, reduction of neural spatial uncertainty during
the dot and face tasks compared to the digit task suggests
that behavioral judgments of face position would be more
accurate during the dot and face tasks. This hypothesis can
be tested in future behavioral studies.
Another open question is exactly how the attentional modu-

lations measured with fMRI manifest at the level of individual
neurons. As prior electrophysiological studies have demon-
strated that attention modulates neuronal firing rates in
monkey IT [26, 28], we hypothesize that similar attentional
modulations of receptive fields (RFs) occur for individual neu-
rons in the ventral visual pathway. Notably, our observation of
task-dependent pRFs might explain the variability of previous
reports of neuronal RF sizes in monkey IT: RFs were largest
during passive viewing [31, 32] and anesthesia [19], whereas
RFs were smallest during demanding discrimination tasks
near the fovea [33].

A B

Figure 2. Systematic Organization of pRF Properties across the Ventral Visual Pathway

(A) pRF size versus eccentricity. Each line represents a region (median across voxels 6 68% CI). Dotted lines indicate eccentricity ranges containing few

voxels. The inset shows a schematic of pRF sizes at 1� eccentricity. IOG, inferior occipital gyrus; pFus, posterior fusiform; mFus, mid-fusiform.

(B) pRF locations and visual field coverage in the left hemisphere. Top row: pRF centers (red dots) and pRF sizes for 100 randomly selected voxels from each

region (gray circles). Bottom row: visual field coverage, computed as the proportion of pRFs covering each point in the visual field. Each image is normalized

such that black corresponds to 0, and white corresponds to the maximum value. IOG, pFus, and mFus contain large pRFs centered near the fovea.

See also Figure S2.
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Rethinking Position Tolerance in the Ventral Visual

Pathway
Position and size tolerance are considered key features of the
ventral visual pathway, useful for object and face recognition.
Tolerance indicates reduced sensitivity to incidental proper-
ties of a stimulus, such as the specific position or size at which
it is viewed [34, 35]. Prevailing theories suggest that tolerance
is achieved by systematic increase in RF sizes across process-
ing stages in the ventral visual pathway [19, 20, 22, 36, 37].
Intuitively, a large RF implies that a wide range of stimulus po-
sitions and sizes drives the neural response [12].

Although our pRFmeasurements are consistent with this ac-
count and reveal a hierarchy of pRF sizes within VTC, there are
two aspects of our data that prompt a rethinking of position
tolerance in VTC. First, we show that position tolerance at the
level of individual voxels is partially the result of top-down
attentional mechanisms and not simply due to static RF prop-
erties (see also [38]). Specifically, we find that when subjects
attend to the stimulus, pRFs enlarge, thereby increasing posi-
tion tolerance. Second,we show that the common intuition that
larger pRFs degrade spatial information may be misleading.
Despite the enlargement of pRFs when subjects attend the
stimulus, the spatial precision with which the location of the
stimulus is represented in VTC improves, rather than worsens.

At first glance, these observations seem inconsistent: how
can attention increase spatial tolerance while also increasing

spatial precision? The answer lies in the distinction between
the local scale (i.e., information carried by a single voxel) and
the global scale (i.e., information carried by distributed re-
sponses across voxels). At the local scale, each individual
voxel shows reduced sensitivity to stimulus location due to
increased pRF size. However, at the global scale, sensitivity
to stimulus location improves due to increased pRF coverage
and scatter in the periphery (Figures 3B and 3C), which
together provide a better tiling of the visual field.

Conclusions
We have used a model-based approach to understand
how attention influences representation in visual cortex. Our
approach consisted of measuring responses to a wide range
of stimulus conditions [39, 40], developing an encoding model
that describes how stimulus information is represented
locally [11, 41, 42], and using decoding analyses to quantify
the information present in distributed responses [43]. Impor-
tantly, although we implemented this approach with fMRI, the
approach is general and can be applied to other experimental
techniques, such as electroencephalography (EEG), magneto-
encephalography (MEG), electrocorticography (ECoG), and
electrophysiology. Comparing results from different experi-
mental techniques in a common model-based framework
may help elucidate the neural signals measured by different
techniques [44] andmay help resolve discrepancies in the sizes

A

B C

Figure 3. Attention Modulates pRF Properties in VTC

pRFs were measured under three tasks using the same stimulus. While maintaining fixation, subjects performed a one-back task on centrally presented

digits (digit task), detected a small dot superimposed on the faces (dot task), or performed a one-back task on face identity (face task).

(A) Summary of results. Each bar represents a region under a single task (median across voxels 6 68% CI). In hV4, and more so in IOG, pFus, and mFus,

attending to the stimulus (dot task, face task) causes an increase in pRF eccentricity, size, and gain compared to attending to fixation (digit task). These

effects are larger for the face task than for the dot task.

(B) Visualization of pRFs for 100 randomly selected voxels from an example region, bilateral IOG (colored dots represent pRF centers; gray circles represent

pRF sizes). In the digit task, pRFs are small and cluster near the fovea, whereas in the face task, pRFs are large and spread out into the periphery.

(C) Visualization of pRF shifts for region IOG. For each voxel, a line is drawn that connects the pRF center under the digit task to the pRF center under the face

task; color indicates the direction of the shift (see legend), and the same color is used for the corresponding dots in (B). In general, pRFs shift away from

the center. Although it appears as if there are many shifts to far eccentricities, the majority (81%) of pRF centers under the face task are actually located

within 5� eccentricity.
See also Figure S3.
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of attentional effects found by different techniques [45]. Over-
all, our study reveals that spatial information is systematically
represented in the ventral visual pathway and that attention
modifies and enhances this spatial representation. These re-
sults provide important insights into how position coding is im-
plemented in the ventral visual pathway.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be foundwith this article online at http://dx.doi.org/

10.1016/j.cub.2014.12.050.

Author Contributions

K.N.K. conducted the experiment and analyzed the data. K.S.W. performed

localizer experiments and assisted with data collection. K.N.K., K.S.W.,

and K.G.-S. conceived and designed the experiments. K.N.K., K.S.W., and

K.G.-S. wrote the paper.

Acknowledgments

WethankT.Naselaris,A.Rokem,J.Winawer, andE.Zohary forhelpfuldiscus-

sions.Wealso thankA.Stigliani for assistancewithbehavioral experiments; J.

Winawer for providing retinotopic mapping data; and N.Witthoft for assisting

in thecollectionof facephotographs.Thisworkwassupportedby theMcDon-

nell Center for Systems Neuroscience and Arts & Sciences at Washington

University (K.N.K.), NEI grant 1R01EY02391501A1 (K.G.-S.), and NEI grant

RO1EY03164 (to BrianWandell). Computationswere performed using the fa-

cilities of theWashingtonUniversityCenter forHighPerformanceComputing,

which were partially provided through grant NCRR 1S10RR022984-01A1.

Received: September 7, 2014

Revised: November 17, 2014

Accepted: December 18, 2014

Published: February 19, 2015

References

1. Ungerleider, L.G., and Mishkin, M. (1982). Two cortical visual systems.

In Analysis of Visual Behavior, D.J. Ingle, M.A. Goodale, and R.J.W.

Mansfield, eds. (MIT Press), pp. 549–586.

2. Goodale, M.A., Milner, A.D., Jakobson, L.S., and Carey, D.P. (1991).

Object awareness. Nature 352, 202.

3. Schwarzlose, R.F., Swisher, J.D., Dang, S., and Kanwisher, N. (2008).

The distribution of category and location information across object-se-

lective regions in human visual cortex. Proc. Natl. Acad. Sci. USA 105,

4447–4452.

4. Kravitz, D.J., Kriegeskorte, N., and Baker, C.I. (2010). High-level visual

object representations are constrained by position. Cereb. Cortex 20,

2916–2925.

5. Carlson, T., Hogendoorn, H., Fonteijn, H., and Verstraten, F.A.J. (2011).

Spatial coding and invariance in object-selective cortex. Cortex 47,

14–22.

6. Silver, M.A., Ress, D., and Heeger, D.J. (2005). Topographic maps of

visual spatial attention in human parietal cortex. J. Neurophysiol. 94,

1358–1371.

7. Sprague, T.C., and Serences, J.T. (2013). Attention modulates spatial

priority maps in the human occipital, parietal and frontal cortices. Nat.

Neurosci. 16, 1879–1887.

8. Szczepanski, S.M., Konen, C.S., and Kastner, S. (2010). Mechanisms of

spatial attention control in frontal and parietal cortex. J. Neurosci. 30,

148–160.

9. Saproo, S., and Serences, J.T. (2010). Spatial attention improves the

quality of population codes in human visual cortex. J. Neurophysiol.

104, 885–895.

10. Klein, B.P., Harvey, B.M., and Dumoulin, S.O. (2014). Attraction of posi-

tion preference by spatial attention throughout human visual cortex.

Neuron 84, 227–237.

11. Dumoulin, S.O., and Wandell, B.A. (2008). Population receptive field es-

timates in human visual cortex. Neuroimage 39, 647–660.

12. Kay, K.N., Winawer, J., Mezer, A., andWandell, B.A. (2013). Compressive

spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494.

A B

C

Figure 4. Attention Reduces Spatial Uncertainty in VTC

For each region and task, we assess the quality of the representation of spatial information using amodel-based decoding analysis. This analysis quantifies

how well a linear classifier can discriminate stimuli at different visual field positions from a stimulus at a reference position.

(A) Example results for a 33 3 grid of reference positions in the upper-right visual field (left inset). Each image is amap of discrimination performance for one

reference position (indicated by the relative position of the image). We define spatial uncertainty as the square root of the area of the 75% correct contour

(white line).

(B) Uncertainty at 1� eccentricity. Each bar represents uncertainty in a region under a single task (median across angular positions 6 68% CI). All regions

exhibit low uncertainty, irrespective of the task.

(C) Uncertainty at 5� eccentricity. Face-selective regions IOG, pFus, and mFus exhibit high uncertainty under the digit task. However, this uncertainty is

dramatically reduced under the dot and face tasks.

See also Figure S4.

5

Please cite this article in press as: Kay et al., Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex, Current
Biology (2015), http://dx.doi.org/10.1016/j.cub.2014.12.050

http://dx.doi.org/10.1016/j.cub.2014.12.050
http://dx.doi.org/10.1016/j.cub.2014.12.050


13. Weiner, K.S., and Grill-Spector, K. (2010). Sparsely-distributed organi-

zation of face and limb activations in human ventral temporal cortex.

Neuroimage 52, 1559–1573.

14. Levy, I., Hasson, U., Avidan, G., Hendler, T., and Malach, R. (2001).

Center-periphery organization of human object areas. Nat. Neurosci.

4, 533–539.

15. Yue, X., Cassidy, B.S., Devaney, K.J., Holt, D.J., and Tootell, R.B.H.

(2011). Lower-level stimulus features strongly influence responses in

the fusiform face area. Cereb. Cortex 21, 35–47.

16. Weiner, K.S., Golarai, G., Caspers, J., Chuapoco, M.R., Mohlberg, H.,

Zilles, K., Amunts, K., and Grill-Spector, K. (2014). The mid-fusiform

sulcus: a landmark identifying both cytoarchitectonic and functional di-

visions of human ventral temporal cortex. Neuroimage 84, 453–465.

17. Kay, K.N., Rokem, A., Winawer, J., Dougherty, R.F., and Wandell, B.A.

(2013). GLMdenoise: a fast, automated technique for denoising task-

based fMRI data. Front Neurosci 7, 247.

18. Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W.,

Brady, T.J., Rosen, B.R., and Tootell, R.B. (1995). Borders of multiple

visual areas in humans revealed by functional magnetic resonance im-

aging. Science 268, 889–893.

19. Gross, C.G., Bender, D.B., and Rocha-Miranda, C.E. (1969). Visual

receptive fields of neurons in inferotemporal cortex of the monkey.

Science 166, 1303–1306.

20. Boussaoud, D., Desimone, R., and Ungerleider, L.G. (1991). Visual

topography of area TEO in themacaque. J. Comp. Neurol. 306, 554–575.

21. Op De Beeck, H., and Vogels, R. (2000). Spatial sensitivity of macaque

inferior temporal neurons. J. Comp. Neurol. 426, 505–518.

22. Issa, E.B., and DiCarlo, J.J. (2012). Precedence of the eye region in neu-

ral processing of faces. J. Neurosci. 32, 16666–16682.

23. Reynolds, J.H., and Heeger, D.J. (2009). The normalization model of

attention. Neuron 61, 168–185.

24. Snippe, H.P., and Koenderink, J.J. (1992). Discrimination thresholds for

channel-coded systems. Biol. Cybern. 66, 543–551.

25. Treue, S., and Maunsell, J.H. (1996). Attentional modulation of visual

motion processing in cortical areas MT and MST. Nature 382, 539–541.

26. Moran, J., and Desimone, R. (1985). Selective attention gates visual

processing in the extrastriate cortex. Science 229, 782–784.

27. Connor, C.E., Preddie, D.C., Gallant, J.L., and Van Essen, D.C. (1997).

Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–

3214.

28. Richmond, B.J., Wurtz, R.H., and Sato, T. (1983). Visual responses of

inferior temporal neurons in awake rhesus monkey. J. Neurophysiol.

50, 1415–1432.

29. Desimone, R., andDuncan, J. (1995). Neural mechanisms of selective vi-

sual attention. Annu. Rev. Neurosci. 18, 193–222.
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Figure S1, Related to Figure 1. Examination of cross-validation performance and stimulus dependence of CSS model. 
(A) Cross-validation performance. The Full model is fit to all face sizes simultaneously and is asked to predict a few held-out 
face positions on each cross-validation iteration. This model performs quite well and approaches the noise ceiling in each region. 
The Generalize model is fit to two face sizes and is asked to predict the held-out face size. Performance is again quite high, 
indicating the model's ability to predict responses to entirely novel face sizes. Finally, the Individual model is fit and cross-
validated on each face size separately. The performance of this model is lower than that of the Full model, indicating that a 
single model (the Full model) is sufficient to account for responses to different face sizes. The low noise ceilings in V1–V3 are 
due to the fact that voxels in these areas have small pRFs and respond to few stimulus conditions. Bars indicate median across 
voxels ± 68% CI. (B) Faces elicit substantially stronger responses compared to phase-scrambled faces in face-selective regions, 
but not early visual areas. Increase in gain is quantified as 100 x (F – P) / P where F and P refer to the gain observed for faces 
and phase-scrambled faces, respectively. Bars indicate median across voxels ± 68% CI. (C) Faces and phase-scrambled faces 
produce similar angle and eccentricity estimates. Each dot represents a voxel, and the gray-level of each dot indicates the 
signal-to-noise ratio (SNR) of the phase-scrambled responses, defined as the maximum response amplitude divided by the 
average error (dark indicates high SNR). When SNR is high, similar angle and eccentricity estimates are obtained. This 
suggests that dissimilarities in estimates are simply due to low SNR. These results indicate that pRFs in face-selective regions 
can, in theory, be estimated using stimuli other than faces but that, in practice, responses may be weak, leading to noisy pRF 
estimates. 



 
 
Figure S2, Related to Figure 2. Additional quantification of pRF properties. (A) pRF locations and visual field coverage in 
the right hemisphere. Same format as Figure 2B. pRFs centers are located in the contralateral visual field and become larger 
and more foveal in anterior regions. (B) Scatterplots of pRF eccentricity versus size. Individual voxels underlying the lines 
relating pRF eccentricity and size in Figure 2A are plotted for each region (combining across hemispheres). Each dot 
corresponds to one voxel, and dots are partially transparent. For each region, we fit a line minimizing the sum of the 
perpendicular distances between the voxels and the line. The fitting procedure is bootstrapped to estimate error (68% CI), 
indicated by the band around each line (some bands are too small to be visible). To summarize the range of eccentricities 
observed in each region, we count voxels in 1° eccentricity bins (0–1°, 1–2°, etc.) and identify bins with at least 10% of the 
number of voxels in the largest bin. These bins are indicated by gray shading and correspond to the solid lines in Figure 2A. (C) 
Summary of pRF eccentricity. Dots indicate the median eccentricity across voxels in each region ± 68% CI. In face-selective 
regions, pRF centers are typically located at foveal eccentricities. Right pFus and mFus exhibit a stronger foveal bias compared 
to left pFus and mFus. 
 
  



 
 
 
 
 
 



 
 
Figure S3, Related to Figure 3. Additional details on the task experiment. (A) Schematic of task experiment. The design is 
similar to that of the pRF-estimation experiment (Figure 1A), except that faces are presented on a coarser grid and at a single 
size. In different runs, the subject performs one of three tasks while maintaining central fixation: press a button when the fixation 
digit repeats (digit task), when a red dot appears on top of the face (dot task), or when face identity repeats (face task). (B) 
Example voxel from task experiment (left IOG, subject 3). A separate pRF is fit to responses measured under each task. Data 
(black bars; median across trials ± 68% CI) and pRF estimates (green lines) are shown for each task. Compared to the pRF 
obtained under the digit task (left), the pRFs obtained under the dot task (middle) and face task (right) exhibit increased 
eccentricity, size, and gain. (C) pRF angle and eccentricity are stable across tasks in V1–V3. Each dot represents a single voxel. 
Dots lie near the line of unity in V1–V3, indicating that the task does not substantially change angle and eccentricity tuning in 
these regions. (D) Eye tracking results (subject 2). Each image is a 2D histogram of eye positions measured during the 
presentation of faces at a single location (the complete 5 x 5 grid of locations is shown for each task). Horizontal and vertical 
gray lines indicate 1° increments. Eye positions were summarized by fitting a 2D Gaussian probability distribution, and a contour 
that contains 95% of the fitted distribution is indicated by a blue line. Eye positions remain consistently near the center of the 
display. (E) Eye tracking results (subject 3). (F) Summary of eye tracking results. For each face location, we compute the area of 
the 95%-contour that summarizes the range of eye positions observed (see panels D–E). We then divide face locations into 
three eccentricity bins (Low: 0–1.6°, Med: 1.6–3.2°, High: 3.2–4.8°) and plot the mean and standard deviation of the contour 
areas observed in each bin. (Due to calibration error, the scale of the results for Subject 1 may be inaccurate.) Although contour 
area varies significantly across tasks (p < 0.0001, one-way ANOVA in each subject), the size of the variation is quite small. To 
better understand the size of the variation, we compute the average contour area across face positions (separately for each 
task) and use a circle to approximate the contour shape. This analysis reveals that for subject 2, eye positions remain within a 
circle of radius 0.64° during the digit task and this radius increases by 0.03° during the dot task and by 0.11° during the face task. 
For subject 3, eye positions remain within a circle of radius 0.57° during the digit task and this radius increases by 0.02° during 
the dot task and by 0.06° during the face task. The increase in scatter of eye positions during the dot and face tasks is quite 
small (~0.1° or less) and cannot account for the sizes of the attentional effects that we observe (in face-selective regions, the 
median increase in pRF eccentricity from the digit task to the face task is ~0.6° and the median increase in pRF size from the 
digit task to the face task is ~1.5°; see Figure 3A). (G) Results of interleaved-task experiment (same format as Figure 3A). In this 
experiment, the same three tasks (digit, dot, face) were randomly interleaved within each run. We observe the same task-related 
changes in pRF properties as in the original task experiment (compare to Figure 3A). Thus, pRF changes cannot be explained 
by differences in subject arousal across runs. (H) Results of peripheral-digits experiment. In this experiment, pRFs were 
measured while subjects performed the digit task at fixation (central-digit task) or 3° left of fixation (peripheral-digit task). To 
examine whether this attentional manipulation causes pRFs to be shifted, we selected pRFs positioned near the center-of-gaze 
under the central-digit task (eccentricity less than 2°), and then computed the centroid of the pRF centers separately for each 
task (median x- and y-coordinate across voxels ± 68% CI; some error bars are not visible due to their small size). In right-
hemisphere hV4, IOG, and pFus, the centroid computed for the peripheral-digit task is shifted leftward relative to the centroid 
computed for the central-digit task, indicating that pRFs in these regions shift towards the locus of attention (size of change in x-
coordinate indicated at top-right of each plot). The absence of a leftward shift in right-hemisphere mFus suggests that attentional 
effects in mFus may specifically require attention to face features (which is present during the face task but not during the 
peripheral-digit task). Overall, the leftward shift of pRF centers is consistent with the influence of a top-down attentional field in 
ventral temporal cortex.  



 
 
Figure S4, Related to Figure 4. Effect of pRF parameters on decoding and results of direct-decoding analysis. (A) 
Changes in pRF location and size reduce spatial uncertainty in distributed responses. We compared the uncertainty of pRFs at 
5° eccentricity under the digit task (black) and face task (light gray) to the uncertainty of pRFs with same location and size 
measured in the face task, but with the gain measured in the digit task (dark gray). We reasoned that if the reduction in 
uncertainty under the face task is due solely to increased pRF gain, then uncertainty under the location-and-size-matched 
condition should be similar to uncertainty under the digit task. The results show that there are reductions in uncertainty when 
location and size (but not gain) are matched to the face task. This indicates that reductions in uncertainty under the face task are 
due not only to changes in pRF gain, but also to changes in pRF location and size. (B) Visualization of direct decoding results for 
an example region, IOG. Each image is a 5 x 5 map of classification performance, where the shading of each pixel indicates 
how well a given face position can be discriminated from the reference face position (which is indicated by the relative position of 
the image within the overall grid). (C) Summary of direct decoding results. For each 5 x 5 map, we compute the average 
classification performance excluding the face position corresponding to the reference. Then, we bin the results according to the 
eccentricity of the reference face position. The mean of each bin (± SEM) is plotted. In face-selective regions, performance 
substantially improves under the face task compared to the digit task for peripheral reference face positions, with the dot task 
yielding intermediate performance. 
  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Subjects 
 
Three experienced fMRI subjects (the authors; two males, one female) participated in this study. All subjects had normal or 
corrected-to-normal visual acuity. Informed written consent was obtained from all subjects, and the experimental protocol was 
approved by the Stanford University Institutional Review Board. Each subject participated in 8–9 scanning sessions: 3–4 
scanning sessions to develop and test the model (pRF-estimation experiment), 3 scanning sessions to examine the effects of 
attention on pRF properties (task experiment, interleaved-task experiment, peripheral-digits experiment), and 2 scanning 
sessions in which retinotopic mapping [S1, S2] and functional localizers [S3, S4] were conducted in order to define regions of 
interest. 
 
Visual stimuli 
 
Stimuli were presented using a Samsung SyncMaster 305T LCD monitor positioned at the head of the scanner bed. Subjects 
viewed the monitor via a mirror mounted on the RF coil. The monitor operated at a resolution of 1280 x 800 at 60 Hz. Stimuli 
subtended 12.5–12.6° of visual angle (viewing distance 182–184 cm). A MacBook Pro computer controlled stimulus presentation 
using code based on Psychophysics Toolbox [S5, S6]. Behavioral responses were recorded using a button box. 
 
Experimental design 
 
pRF-estimation experiment 
 
The goal of this experiment was to develop a population receptive field (pRF) model [S7, S8] that describes VTC responses. We 
therefore designed a novel protocol optimized for estimating pRFs in high-level visual areas. In this protocol, subjects 
maintained central fixation while faces and phase-scrambled faces were presented at various positions and sizes. To construct 
the face stimuli, we photographed individuals in a controlled laboratory environment and generated a stimulus set of 95 
individuals x 7 viewpoints (0°, ±15°, ±30°, ±45°) = 665 faces. The faces were converted to grayscale, cropped with a circular 
mask, rescaled to three different sizes (1.6°, 3.2°, 4.7° diameter), and placed on a gray background (Figure 1A). The positions of 
the faces were varied according to a 7 x 7 grid with 1° spacing (with the central position coincident with the center-of-gaze). 
Phase-scrambled faces were constructed for the smallest face size (1.6° diameter). This was done by randomizing the phase 
spectrum of each face (excluding the DC component), cropping the resulting images with a circular mask to match the spatial 
extent of the original faces, and then reducing image contrast by 30% to avoid clipping of luminance values. The pRF-estimation 
experiment included a total of 7 positions x 7 positions x 4 stimulus types (small faces, medium faces, large faces, phase-
scrambled small faces) = 196 conditions. 
 
Stimuli were presented in 4-s trials, one condition per trial. In a trial, 7 images lasting 0.5 s each were sequentially presented 
and were followed by a 0.5-s delay before the next trial. The images presented in a trial were drawn from the same position and 
stimulus type but were randomized with respect to identity and viewpoint in order to reduce adaptation effects [S9, S10] and 
increase response magnitudes. A white semi-transparent (20% opacity) fixation grid was superimposed on top of the stimuli and 
was present throughout the duration of the experiment [S11]. 
 
The 196 conditions were randomly split into 4 groups containing 49 stimuli each. Stimulus types were equally distributed across 
groups (e.g. each group contained 12–13 small faces, 12–13 medium faces, etc.). In each run, conditions from one of the 
groups were presented once and in random order. To establish the baseline signal level, each run also included null trials in 
which no stimuli were presented. Four null trials were inserted at the beginning and end of each run, and ten null trials were 
randomly intermixed with the 49 stimulus trials under the constraint that null trials could not occur first nor last and null trials 
could not occur back-to-back. Each run lasted ~4.5 min. A total of 4 groups x 3 repetitions = 12 runs were collected in a 
scanning session. Thus, each of the 196 conditions was presented 3 times over the course of the session. 
 
A single task was used throughout the pRF-estimation experiment: the subject was instructed to fixate the center of the grid and 
to press a button whenever a red dot (0.3° x 0.3°, 25% opacity) appeared on top of the stimulus. The red dot was always 
positioned at the center of the stimulus. The dot appeared with probability 0.5 on each trial, lasted 0.5 s, and coincided with the 
presentation of one of the 7 images from that trial. 
 
To increase the signal-to-noise ratio (SNR) in the pRF-estimation experiment, each subject participated in 3–4 scanning 
sessions of the experiment. The stimuli and their temporal ordering were matched across scanning sessions. Data from different 
sessions were pre-processed (see Data pre-processing) and then averaged together before subsequent analysis. 
 
Task experiment 
 
The goal of this experiment was to characterize the effects of attention on pRF properties. The task experiment was similar to 
the pRF-estimation experiment, except that the fixation grid was removed, the number of stimuli was reduced, and responses 
were measured for three different tasks (digit task, dot task, face task). To reduce the number of stimuli, only medium-sized 
faces were used (3.2° diameter) and a coarser grid was used (5 x 5 grid, 1.5° spacing). The task experiment included a total of 5 



positions x 5 positions x 3 tasks = 75 conditions (Figure S3A). In each trial, subjects viewed a sequence of 7 faces presented at 
a single position. 
 
To support the tasks, additional characteristics were added to the stimulus design: (1) We placed a red dot on top of one of the 
faces in a trial at a probability of 0.5 per trial (same as in the pRF-estimation experiment). (2) For each 4-s trial, we generated a 
random sequence of 7 faces satisfying the constraint that both identity and viewpoint change from one face to the next. Then, 
with probability 0.5, we manipulated this sequence to contain a repetition of face identity. This was done by randomly selecting 
one of the faces (excluding the first) and forcing that face to repeat the identity of the previous face (thus, the repeated face 
shows a different viewpoint of the same individual). (3) We placed a stream of small digits (0.3° x 0.3°) at the center-of-gaze. 
The identity of the digit (0–9) changed every 0.5 s: each digit was presented for 0.25 s and was followed by a delay of 0.25 s. To 
minimize visual adaptation, the digit color alternated between black and white on successive presentations. Digit repetitions 
occurred with a probability of 0.052, with a maximum of two successive identical digits allowed (this matches the overall 
frequency of digit repetitions to the overall frequency of dot occurrences and the overall frequency of face-identity repetitions).  
 
At the beginning of each run, the subject was instructed to perform one of three tasks while viewing the stimuli. In the digit task, 
the subject was instructed to fixate the central digit and to press a button whenever the same digit repeated. In the dot task, the 
subject was instructed to fixate the central digit and to press a button whenever the red dot appeared. In the face task, the 
subject was instructed to fixate the central digit and to press a button whenever the same face identity was repeated within a trial.  
 
In each run, each of the 25 stimuli was presented twice and in random order. Null trials were included just as in the pRF-
estimation experiment. Each run lasted ~4.5 min. The first run involved the dot task, the second run the digit task, the third run 
the face task, and this cycled until a total of 3 tasks x 4 repetitions = 12 runs were collected. Thus, each of the 75 conditions was 
presented 8 times over the course of the session. To ensure that the only difference across tasks is the subject's attentional 
state, the exact same physical stimulus (including faces, dots, digits, and their temporal ordering) was used for each task. This 
was accomplished by generating four distinct stimulus sequences and repeating them over the course of the session (i.e., the 
stimuli are given by ABCD ABCD ABCD, where each letter corresponds to a distinct stimulus sequence, while the tasks are 
given by DGF DGF DGF DGF, where D, G, and F indicate the dot, digit, and face tasks, respectively). To verify accurate fixation, 
eye tracking was performed using a scanner-compatible SR Research EyeLink 1000 eye tracker. 
 
Interleaved-task experiment 
 
To control for potential differences in subject arousal across tasks, we conducted an experiment in which tasks were randomly 
interleaved on a trial-by-trial basis within each run. This experiment was identical to the original task experiment except for the 
following: (1) A central red letter (0.3° x 0.3°) presented at the beginning of each trial served as a cue for which task to perform 
('G': digit, 'D': dot, 'F': face). (2) Trials lasted 6 s and were structured as follows: 0.5-s cue presentation, 0.5-s delay, 1.0-s of 
digits, 3.5-s of faces and digits, and 0.5-s delay. (3) The 25 face locations were randomly split into 2 groups (13 and 12 locations 
each). In each run, face locations from one of the groups were presented three times, once for each task. Each run also 
included three cue-only trials for each task as well as three null trials at the beginning and end of the run and three null trials 
intermixed during the run. During cue-only trials, the cue and digits were presented but faces were omitted; during the null trials, 
just the digits were presented (no cue, no faces). The total number of trials was 3 null + ((13 (or 12) conditions + 3 cue-only) x 3 
tasks + 3 null) + 3 null = 57 (or 54) trials, lasting 5.7 (or 5.4) min. (4) Digit repetitions occurred with probability 0.5 on each cued 
trial. (5) A total of 2 groups x 6 repetitions = 12 runs were collected. 
 
Peripheral-digits experiment 
 
This experiment was similar to the task experiment, except that the fixation grid was present and responses were measured for 
two tasks. The central-digit task was identical to the original digit task: the subject performed a 1-back task on centrally 
positioned digits of size 0.3° x 0.3°. In the peripheral-digit task, the subject also performed a 1-back task on digits, but the digits 
were positioned 3.0° left of center and were enlarged to 0.75° x 0.75° to compensate for lower reading acuity in the periphery. 
The two tasks were performed in alternating runs until 10 runs were collected. The same physical stimulus (up to the location 
and size of the digits) was used for the two tasks. 
 
MRI data acquisition 
 
Functional MRI data were collected at the Stanford Center for Cognitive and Neurobiological Imaging using a 3T GE Signa 
MR750 scanner and a Nova 16-channel visual RF coil. In each scanning session, 26 oblique slices covering occipitotemporal 
cortex were defined: slice thickness 2 mm, slice gap 0 mm, field-of-view 160 mm x 160 mm, phase-encode direction anterior-
posterior. A T2*-weighted, single-shot, gradient-echo EPI pulse sequence was used: matrix size 80 x 80, TR 2006.553 ms, TE 
33 ms, flip angle 77°, nominal spatial resolution 2 mm x 2 mm x 2 mm. The TR was matched to the refresh rate of the display 
such that there are exactly 2 TRs for each 4-s trial (i.e. 240 refreshes). Measurements of the B0 magnetic field were performed 
for post-hoc correction of EPI spatial distortion. 
 
 
 
 



Data analysis 
 
Region-of-interest (ROI) definition 
 
All ROIs were defined in individual subjects based on each subject's native anatomical space and without spatial smoothing as 
in our prior studies [S3, S12]. Visual field maps were defined using retinotopic mapping scans. Subjects participated in 4–8 runs 
in which they viewed sweeps of bar apertures that contained a flickering checkerboard pattern while fixating on a central point 
[S4, S7]. These data were used to define V1, V2, V3, and hV4 [S13]. Face-selective regions were defined using functional-
localizer scans. Subjects participated in 2 runs of a block-design experiment in which images of faces, limbs, flowers, houses, 
cars, guitars, and scrambled objects were presented [S3]. Using these data, three face-selective regions were defined based on 
their significantly higher responses to faces compared to other stimuli (t > 3, voxel level, uncorrected) and their anatomical 
location and topological relationship to retinotopic areas and other high-level visual regions [S3, S12, S14]. The defined regions 
are the inferior occipital gyrus, IOG-faces/OFA (abbreviated IOG); posterior fusiform gyrus, pFus-faces/FFA-1 (abbreviated 
pFus); and middle fusiform gyrus, mFus-faces/FFA-2 (abbreviated mFus). Whether these face-selective regions in humans are 
retinotopically organized (as has been suggested for macaques [S15]) is an important question and is outside the scope of the 
present study. 
 
Data pre-processing 
 
The fMRI data were pre-processed by dropping the first five volumes of each run (to allow magnetization to reach steady-state) 
and performing slice time correction, spatial undistortion, and motion correction (both within and across scanning sessions). The 
combined effects of distortion and motion were corrected using a single cubic interpolation of the slice-time corrected volumes 
(for further details of pre-processing, see [S16]). No spatial smoothing was performed. Data were aligned to each subject’s 
native anatomical volume in order to identify voxels in each ROI. 
 
GLM analysis 
 
The pre-processed fMRI data were analyzed using GLMdenoise [S17] (MATLAB implementation available at 
http://kendrickkay.net/GLMdenoise/), a data-driven denoising method that derives estimates of correlated noise from the data 
and incorporates these estimates as nuisance regressors in a general linear model (GLM) analysis of the data. GLMdenoise 
uses polynomials to model the baseline signal level in each run and provides an estimate of the BOLD response amplitude of 
each voxel to each condition. Response amplitudes are converted to units of percent BOLD signal change by dividing by the 
mean signal intensity in each voxel, and error bars on response amplitudes are obtained by bootstrapping (resampling runs with 
replacement). Subsequent analyses involved analyzing these response amplitudes. For the interleaved-task experiment, the 
GLM included a set of finite impulse response regressors for each cue type (extending 0–20 s after cue onset) in order to 
account for any non-specific effects related to the cue or task preparation. 
 
Population receptive field (pRF) analysis 
 
pRF analysis was performed independently for each voxel. We modeled the response amplitudes from each voxel using the 
compressive spatial summation (CSS) model [S8] (MATLAB implementation available at http://kendrickkay.net/socmodel/), 
which is an extension of standard pRF analyses [S7]. The CSS model predicts voxel responses to stimuli presented at arbitrary 
locations in the visual field. Each voxel’s pRF is modeled using an isotropic 2D Gaussian combined with a static power-law 
nonlinearity. By fitting the model, we determine where and how large the pRF must be in order to generate the response 
amplitudes observed for a given voxel. The model includes two parameters (x, y) for the position of the Gaussian, a parameter 
(σ) for the size of the Gaussian, a parameter (n) for the exponent of the power-law nonlinearity, and a parameter (g) for the 
overall gain of the predicted responses. In the CSS model, stimuli are represented as contrast images (see Figure 1B) and the 
predicted response is obtained by computing a weighted sum of the stimulus with the Gaussian and then applying the power-law 
nonlinearity. 
 
Intuitively, the CSS model predicts the response to a stimulus based solely on the spatial extent of the stimulus and its spatial 
overlap with the pRF (if the stimulus completely covers the pRF, it will produce the largest response; if it partially overlaps the 
pRF, it will produce an intermediate response; and if it does not overlap the pRF, it will produce no response). The power-law 
nonlinearity, which is typically compressive (n < 1), allows the model to exhibit tolerance to a range of changes in the position 
and size of the stimulus [S8]. In our data, the exponent of the power-law nonlinearity (n) is 0.53, 0.32, 0.22, 0.19, 0.20, 0.16, and 
0.23 in V1, V2, V3, hV4, IOG, pFus, and mFus, respectively (median across voxels). Note that the CSS model predicts larger 
responses for larger faces, since larger faces cover more of the pRF. Also, note that the CSS model does not account for 
response variations driven by stimulus type—for example, stronger responses to faces compared to phase-scrambled faces in 
face-selective regions (Figure S1B)—but extensions of the CSS model (as in [S16]) may be able to do so. In general, expanding 
the range of stimuli for which the model makes accurate predictions—such as a model that is fully computable for arbitrary 
images [S18]—is an important direction for future research. 
 
We define pRF size as σ/√n, which is the standard deviation of a 2D Gaussian that characterizes the response of the model to 
point stimuli [S8]. We visualize the location of a pRF by plotting a contour at ±2 pRF sizes away from the pRF center (Figure 1B). 



Finally, we quantify pRF gain by computing the maximum predicted response for the stimuli considered in the model fitting (this 
empirically observed gain is more robust than the raw gain parameter). 
 
Model fitting was performed using nonlinear optimization (MATLAB Optimization Toolbox). For the purposes of modeling, we 
rectified the response amplitudes observed at each voxel (negative response amplitudes were set to zero). In our experiments, 
negative BOLD responses  can be found in V1–V3, indicating that the presentation of a face can cause the BOLD signal in a 
voxel to drop below baseline. Such suppression may reflect early attentional filtering and may have a distinct physiological 
source [S19] compared to positive BOLD responses which are the focus of the present study. 
 
For the pRF-estimation experiment, several versions of the CSS model were fit. The Full model involved fitting the model to all 
three face sizes simultaneously; the Individual model involved fitting the model to each face size separately as well as the 
phase-scrambled faces separately; and the Generalize model involved fitting the model to two face sizes and predicting 
responses to the third face size (details below). The final parameter estimates for each voxel were those obtained from the Full 
model; the purpose of the other versions of the model was to assess the cross-validation accuracy of the model (Figure S1A) 
and to examine whether pRF estimates depend on the type of stimulus used (Figures S1B, S1C; comparison of pRFs obtained 
using small faces and pRFs obtained using phase-scrambled small faces). 
 
For the three experiments in which task was manipulated, the CSS model was fit separately to the response amplitudes 
measured under each task. Since the reduced number of stimuli in these experiments provide insufficient data to reliably 
estimate the exponent parameter (n), the exponent parameter was set to a fixed value (0.2). Note that any task-induced 
changes in response amplitudes reflect changes in evoked activity and not changes in baseline activity. This is because in the 
task experiment and peripheral-digits experiment, any shifts in the baseline signal level due to the task are explicitly modeled in 
the GLM (using a separate set of polynomial regressors for each run), and in the interleaved-task experiment, any non-specific 
effects related to task preparation are explicitly modeled in the GLM (using finite impulse response regressors). 
 
Cross-validation was used to estimate the accuracy of the CSS model. For the Full and Individual models, the response 
amplitudes for each face size were randomly split into ten groups, and each group was systematically left out and used as the 
testing set (thus, a total of 30 cross-validation iterations were performed). A different cross-validation scheme was used for the 
Generalize model: this model involved three cross-validation iterations in which each face size was left out and used as the 
testing set. In all cases, accuracy was quantified as the percentage of variance explained (R2) between the cross-validated 
predictions of the response amplitudes and the measured response amplitudes (variance was defined with respect to 0% BOLD 
signal change; see [S8, S16]). For comparison, we computed the noise ceiling for model predictions, i.e. the maximum possible 
performance given the level of noise in the data. This was accomplished through Monte Carlo simulations (see [S8] for details). 
We also computed, for comparison purposes, the accuracy of a flat-response (invariant or fully tolerant) model that simply 
predicts the same response regardless of the position and size of the face. Results of the cross-validation analysis are shown in 
Figure S1A. 
 
Model-based decoding analysis 
 
The purpose of the model-based decoding analysis is to assess how well a collection of pRFs represent spatial information. The 
decoding analysis is applied separately to pRFs observed under different tasks; this helps us understand why task-induced 
changes in pRF properties might be useful. In the decoding analysis, we quantify how well a simple linear classifier can 
discriminate faces at two different positions based on the distributed pattern of responses across the collection of pRFs in a 
region of interest. 
 
First, we used the pRFs to predict the response patterns that would be produced by a small-sized face (1.6° diameter) at 
different visual field positions. Then, for each position and a given reference position, we calculated how well an optimal linear 
decoder can discriminate the two face positions based on the response patterns. We assumed that response patterns are 
affected by additive, independent Gaussian noise with standard deviation 0.05*√n where n is the number of pRFs (scaling by the 
square root of the number of pRFs compensates for differences in the number of pRFs in different regions). Example maps of 
discrimination performance are shown in Figure 4A. Finally, to summarize discrimination performance, we calculated the square 
root of the area of the 75%-correct contour of each map. We refer to the result as the spatial uncertainty, as it indicates the 
distance below which shifts in face position cannot be well discriminated. Intuitively, the larger the contour, the more uncertain 
the position of the face. 
 
To disregard differences in gain across voxels, we fixed the gain of all pRFs observed under the digit task to 1. We then set the 
gains of pRFs observed under the dot and face tasks according to the scaling that was observed (e.g., if the gain under the digit 
task for a given voxel was 0.8% BOLD change and the gain under the face task was 1.2% BOLD change, then the gain of the 
pRF under the face task would be set to 1.5). To avoid the influence of outliers, gain scalings were subjected to 50% 
Winsorization (gain scalings below the 25th percentile were set to the 25th percentile and gain scalings above the 75th 
percentile were set to the 75th percentile). 
 
In Figures 4B, 4C, and S4A, we show results for reference positions located at 16 equally spaced angles at two different 
eccentricities, 1° and 5°. The median and error across angular positions is plotted. 
 



Direct decoding analysis 
 
The model-based decoding analysis described above provides the ability to control the amount and type of noise present, to 
explore stimulus configurations beyond the particular ones used in the experiment, and to identify the specific characteristics of 
representation that influence decoding performance. However, the analysis relies on the validity of the models that are fit to the 
data. We performed an alternative decoding analysis in which decoding is performed directly from the data, without an 
intervening modeling step. First, we analyzed the time-series data from the task experiment using a GLM in which a separate set 
of BOLD response amplitudes is estimated for each run. This produced four independent sets of response amplitudes for each 
face position and task. Next, response amplitudes were converted into t units. Finally, for each region and task, we quantified 
how well response patterns discriminate each face position from all other face positions. This was done by performing nearest-
centroid classification using a split-half cross-validation scheme. For example, response patterns from runs 1 and 2 are 
averaged together, producing one centroid for the reference face position and one centroid for the target face position. Then, 
response patterns from runs 3 and 4 for the target face position are averaged together and classified by determining the nearest 
centroid. All possible training/testing splits of the runs were performed (a total of six), and classification performance was 
aggregated across splits. 
 
Voxel selection 
 
Voxels in each region of interest (ROI) were pooled across subjects. Unless otherwise indicated, all figure plots use median as a 
measure of central tendency and error bars (68% confidence intervals) were obtained using bootstrapping. Error bars reflect 
variability across voxels in each ROI (Figures 2A, 3, S1, S2), across trials (Figures 1C, S3B), or across angular position (Figures 
4B, 4C, S4A). For quantification of pRF properties, to avoid noisy unreliable voxels, we selected voxels with a goodness-of-fit R2 

of at least 50%. For quantification of task effects, we selected voxels with a goodness-of-fit R2 of at least 50% for at least one of 
the tasks (with the exception of Figures 3B–3C where a cutoff of 80% was used in order to improve visibility). 
 
Behavioral analysis 
 
Button responses within two seconds of each behavioral event of interest were analyzed. Behavioral performance was 
quantified using the d' sensitivity index [S20]. In some cases, no misses (all hits) or no false alarms (all correct rejections) were 
observed. To ensure finite d' values for these cases, the minimum number of misses or false alarms was set to 1. In the pRF-
estimation experiment, d' was 2.9, 3.1, and 5.1 for Subjects 1, 2, and 3, respectively. In the task experiment, d' for the digit, dot, 
and face tasks was [2.3, 2.6, 1.3], [2.0, 3.8, 1.2], and [3.1, 4.7, 2.5] for Subjects 1, 2, and 3, respectively (mean across subjects: 
[2.5, 3.7, 1.7]). 
 
Eye-tracking analysis 
 
Eye tracking was performed during the task experiment. For each run, time-series of horizontal and vertical eye positions were 
obtained. Blinks were detected based on outlier values, and data within ±0.1 seconds of each blink were excised. A line was fit 
and removed from each time-series to compensate for instrumental drift. Eye-tracking results show that all subjects were able to 
maintain central fixation in each of the three tasks (Figures S3D–S3F). Due to calibration error, the absolute units for horizontal 
and vertical eye positions may be inaccurate for Subject 1. 

 
	
    



SUPPLEMENTAL REFERENCES 
 
S1. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. 

(1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–
893. 

S2. Engel, S. A., Rumelhart, D. E., Wandell, B., Lee, A. T., Glover, G. H., Chichilnisky, E. J., and Shadlen, M. N. (1994). fMRI 
of human visual cortex. Nature 369, 525. 

S3. Weiner, K. S., and Grill-Spector, K. (2010). Sparsely-distributed organization of face and limb activations in human ventral 
temporal cortex. NeuroImage 52, 1559–1573. 

S4. Weiner, K. S., and Grill-Spector, K. (2011). Not one extrastriate body area: using anatomical landmarks, hMT+, and visual 
field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage 56, 2183–2199. 

S5. Brainard, D. H. (1997). The Psychophysics Toolbox. Spat Vis 10, 433–436. 
S6. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10, 

437–442. 
S7. Dumoulin, S. O., and Wandell, B. (2008). Population receptive field estimates in human visual cortex. NeuroImage 39, 

647–660. 
S8. Kay, K. N., Winawer, J., Mezer, A., and Wandell, B. (2013). Compressive spatial summation in human visual cortex. 

Journal of neurophysiology 110, 481–494. 
S9. Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., and Malach, R. (1999). Differential processing of objects 

under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203. 
S10. Weiner, K. S., Sayres, R., Vinberg, J., and Grill-Spector, K. (2010). fMRI-adaptation and category selectivity in human 

ventral temporal cortex: regional differences across time scales. Journal of neurophysiology 103, 3349–3365. 
S11. Schira, M. M., Tyler, C. W., Breakspear, M., and Spehar, B. (2009). The foveal confluence in human visual cortex. J. 

Neurosci. 29, 9050–9058. 
S12. Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., Amunts, K., and Grill-Spector, K. (2014). 

The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal 
cortex. NeuroImage 84, 453–465. 

S13. Brewer, A. A., Liu, J., Wade, A. R., and Wandell, B. (2005). Visual field maps and stimulus selectivity in human ventral 
occipital cortex. Nature neuroscience 8, 1102–1109. 

S14. Weiner, K. S., and Grill-Spector, K. (2012). The improbable simplicity of the fusiform face area. Trends in cognitive 
sciences 16, 251–254. 

S15. Janssens, T., Zhu, Q., Popivanov, I. D., and Vanduffel, W. (2014). Probabilistic and single-subject retinotopic maps reveal 
the topographic organization of face patches in the macaque cortex. J. Neurosci. 34, 10156–10167. 

S16. Kay, K. N., Winawer, J., Rokem, A., Mezer, A., and Wandell, B. (2013). A two-stage cascade model of BOLD responses in 
human visual cortex. PLoS computational biology 9, e1003079. 

S17. Kay, K. N., Rokem, A., Winawer, J., Dougherty, R. F., and Wandell, B. (2013). GLMdenoise: a fast, automated technique 
for denoising task-based fMRI data. Front Neurosci 7, 247. 

S18. Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and DiCarlo, J. J. (2014). Performance-optimized 
hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of 
the United States of America 111, 8619–8624. 

S19. Gouws, A. D., Alvarez, I., Watson, D. M., Uesaki, M., Rogers, J., and Morland, A. B. (2014). On the role of suppression in 
spatial attention: evidence from negative BOLD in human subcortical and cortical structures. J. Neurosci. 34, 10347–10360. 

S20. Macmillan, N. A., and Creelman, C. D. (2004). Detection Theory (Psychology Press). 
 


	CURBIO11720_proof.pdf
	Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex
	Results
	Does a pRF Model Predict Responses in VTC?
	What Is the Nature of pRFs in VTC?
	How Are pRF Properties Affected by Attention?
	What Is the Benefit of Attentional Modulation of pRFs?

	Discussion
	Attentional Effects in the Ventral Visual Pathway
	Rethinking Position Tolerance in the Ventral Visual Pathway
	Conclusions

	Supplemental Information
	Acknowledgments
	References



