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Article history: Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in
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animal models. Understanding their function in the context of sensory processing and representation is a
major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational
geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of
representations between brain regions. We characterized the representations in several human visual areas by
representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli.
The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of
the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of
separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the represen-
tational geometries can be explained by coherent fluctuations of regional-mean activation within visual cortex,
reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinc-
tions between the representational geometries: a Gabor wavelet pyramid model explained representational geom-
etry in visual areas V1-3 and a categorical animate-inanimate model in the object-responsive lateral occipital
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Introduction

Visual stimulation has been shown in animal models to only slightly
modulate ongoing cortical dynamics in the visual cortex (Arieli et al.,
1996; Fiser et al.,, 2004). Trial-to-trial variability of evoked fMRI
responses in human cortex has also been related to coherent intrinsic
fluctuations of activity (Becker et al.,, 2011; Fox et al., 2006). However,
the effect of intrinsic dynamics on visual representations and their
functional role is not well understood.

The representational content of neuronal population codes is
increasingly being investigated with pattern-information techniques
(Kriegeskorte and Kreiman, 2011). In this approach, stimulus-related
activity patterns are interpreted as distributed representations of the
stimuli. Functional magnetic resonance imaging (fMRI) enables us to
image many areas simultaneously and to investigate the transformation
of the representational space across stages of processing. However, pre-
vious studies have ignored the effect of intrinsic dynamics on
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comparisons of representations between different areas. That is, visual
areas show prominent coherent fluctuations in spontaneous activity be-
tween the areas in the absence of visual stimulation (Shmuel and
Leopold, 2008), a phenomenon typically referred to in human brain im-
aging as functional connectivity (Fox and Raichle, 2007; Nir et al., 2006).

Resting-state functional connectivity between brain regions has
also been shown to be highly similar to connectivity estimated based
on fMRI response-pattern dissimilarities during task-performance
(Ritchey et al., 2014). This has been interpreted as evidence for sub-
networks of brain regions contributing to specific tasks. Resting-state
functional connectivity measures and stimulus-related response-
pattern dissimilarities may, however, have a common underlying com-
ponent that has remained unrecognized. Here we show that estimates
of stimulus-related response-pattern dissimilarities can be strongly
affected by ongoing cortical dynamics.

The representational geometry of a visual area can be character-
ized by a representational dissimilarity matrix (RDM), which con-
tains a representational distance for each pair of stimulus-related
fMRI response patterns (Kriegeskorte and Kievit, 2013; Kriegeskorte
et al., 2008a). Representations in two brain regions can be compared
by computing the correlation between their RDMs (Kriegeskorte,
2009; Nili et al., 2014). Likewise, a brain RDM can be directly
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compared to a model RDM that captures the response-pattern dis-
similarities in the internal representation of a computational model
that processes the stimuli (Khaligh-Razavi and Kriegeskorte, 2014;
Kriegeskorte, 2009). Comparing visual representations between
brain areas and processing stages in computational models can help
us better understand the functional organization of the human visual
cortex. The goal is to understand how the representational space is
transformed across stages of processing. However, as shown here, co-
herent fluctuations of overall activation between two regions can
make the apparent representational geometries of visual areas much
more similar than the true underlying visual representations.

Fig. 1 illustrates the effect of coherent intrinsic response fluctua-
tions on RDMs. In this simple simulation, primary visual cortex
(V1) responded equally to three categories of stimuli (bodies, faces,
objects) whereas face-responsive fusiform face area (FFA) showed
preference for faces. The difference between the response profiles
is reflected in their RDMs shown in Fig. 1A. In Fig. 1B, a coherent fluc-
tuation component was added to the responses. The underlying
stimulus-driven pattern variances remained the same but the visual
areas now shared the fluctuation in the overall responsiveness across
time. As a result, the RDMs of the two visual areas are highly similar
(Fig. 1B), thus challenging the interpretation of the differences be-
tween the stimulus representations and highlighting the contribu-
tion of shared intrinsic response fluctuations on representational
geometries.

In this study, we explored fMRI responses in human visual cortex
to a large set (1750) of natural images (Kay et al., 2008). Fig. 2 shows
results illustrating coherent response fluctuations between visual
areas in this data—both the mean and the variance of the response-
patterns fluctuate synchronously across visual cortex. Areas closer
in cortex, and in the visual hierarchy, tended to exhibit greater func-
tional connectivity (Fig. 2C). These fluctuations were unrelated to
the stimuli and thus likely reflected intrinsic cortical dynamics
(Figs. 2D-F). We will show that the coherent fluctuations have a
strong effect on the representational similarity between visual
areas, and that the true stimulus-driven component can be revealed
by comparing RDMs constructed from response-patterns estimated
on the basis of separate trials.
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Materials and methods
Visual stimuli and fMRI data

The current study used fMRI data from a previously published
study; for details on the visual stimuli, data acquisition and data pre-
processing, please see Kay et al. (2008) and Naselaris et al. (2009). This
data had been used as training data for voxel-receptive-field modeling.
In short, the stimuli were 1750 gray-scale natural photographs that
were masked with a 20°-diameter circle (for an example, see Fig. 1A)
and were presented for 1 s (flashed three times ON (200 ms)-OFF
(200 ms)-ON (200 ms)-OFF (200 ms)-ON (200 ms)) with a 3-s
fixation-only period between successive photographs and every eight
trial being a null trial. Data from three subjects were analyzed (S1-S3).
For each subject, the data had been collected in five separate scanning ses-
sions with five experimental runs in each. Each experimental run
consisted of 70 different natural images, each presented two times.

The data were pre-processed using an updated protocol which
included slice-timing correction, motion correction, upsampling to
(1.5 mm)? resolution and improved co-registration between the func-
tional data sets. The data were modeled with a variant of the general lin-
ear model including discrete cosine basis set for the hemodynamic
response function (HRF) estimation. Low-frequency noise fluctuations,
such as scanner drift, were accounted for by polynomials (for details,
please see Kay et al. (2008)). The beta weights characterizing the ampli-
tude of the BOLD response to each stimulus were transformed to Z scores.

The regions-of-interests V1, V2, V3, V4, LO, V3A and V3B were based
on independent localizer data based on retinotopic criteria (Naselaris
et al., 2009). The analysis was restricted to voxels with signal-to-noise
ratio greater than 1.5 (median value observed across all images). The
regions-of-interest contained no overlapping voxels.

Representational similarity analysis
The fMRI response patterns evoked by the different natural images
were compared to each other using correlation distance, and all

pairwise comparisons were assembled in a representational dissimilar-
ity matrix (RDM) for each region (Kriegeskorte et al., 2008a; Nili et al.,
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Fig. 1. Simulation on the effects of coherent response fluctuations on RDM similarity. A) Simulated primary visual cortex (V1; 150 voxels) responds equally strongly to three categories of
stimuli (B = bodies, F = faces, O = objects). The representational similarity matrix (RDM) captures the pair-wise representational distance between the response patterns for each stim-
ulus with the V1 RDM showing no interesting structure. The simulated fusiform face area (FFA; 100 voxels) shows preference for face-stimuli (F) and responds slightly more strongly also
to the bodies (B) than to objects (O). This is reflected in the FFA RDM showing most similar response-patterns for the Faces. The V1 RDM and the FFARDM are clearly different (Spearman's
rank correlation r = 0.07, not significant; condition-label randomization test (Kriegeskorte et al., 2008a)). B) A coherent response fluctuation component was added to V1 and FFA re-
sponses (for details, see the Materials and methods section). The stimulus-driven patterns remained the same but the visual areas now shared the fluctuation in the overall responsiveness
across time. As a result, the RDMs of the two visual areas are highly similar (Spearman's rank correlation r = 0.69, p < 0.001; condition-label randomization test (Kriegeskorte et al.,
2008a)). This shows that coherent response-pattern fluctuations can have a significant effect on visual representations as reflected in response-pattern dissimilarities.
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Fig. 2. Coherent response-pattern fluctuations in natural image data. A) The response amplitudes for 5 natural images are shown for a subset of voxels in visual areas V1 and V2 of subject
S1. The responses in all voxels in both V1 and V2 were low for the first stimulus, stronger for the second stimulus and again lower for the fourth stimulus. That is, the visual areas showed
coherent dynamics in their response patterns. B) The mean and variance of the response pattern amplitudes for 70 natural stimuli are shown for visual areas V1 and V2. Both showed
highly coherent dynamics between the visual areas. C) The matrices show the mean correlations between response-pattern-means (top row) and variances (bottom row) between
all pair-wise comparisons of the visual areas. The matrices are also visualized using multidimensional-scaling arrangement. What emerged from the coherence of the response-pattern
fluctuations is the hierarchy of visual areas. D-F) When the comparisons were done between repeated presentations of the same stimuli (separate trials), the correlations in the
response-pattern-mean and variance were much lower. As shown with the simulations in Fig. 1, this suggests a significant contribution of the coherent response fluctuations on the

similarity of the RDMs from different visual areas in this data.

2014). Fig. 3B shows an example RDM. The RDMs were calculated
separately for each experimental run with 70 different natural images in
each. The measure for dissimilarity was correlation distance (1 — Pearson
linear correlation) between the response patterns.

To study the ability to discriminate the natural images from the fMRI
response patterns, we used split-data RDMs, where the pair-wise dis-
similarities were computed between the two response patterns that
were measured on different trials. Fig. 3C shows an example of such
RDM, where the diagonal reflects the dissimilarity of the response pat-
terns between the first and second presentations of the same natural
image. An index for the natural image discriminability was calculated
as the subtraction of the mean of the diagonal values from the mean
of the off-diagonal values. Exemplar discrimination index greater than
zero indicates distinguishable response patterns for the natural images.

The replicability of the similarity structure captured by an RDM was
assessed by comparing single-trial RDMs based on the two separate pre-
sentations of the same set of images. The RDMs were compared using
Kendall's tau-a rank correlation distances of the values in the upper
(or equivalently the lower) triangle of the RDMs (for details on the
different correlation-distance measures, please see Nili et al. (2014)).

Computational models

The visual area RDMs were compared to three different model
predictions on the representational similarity structure: Gabor wavelet
pyramid model, Gist and animate-inanimate distinction. In a model
RDM, each cell reflects the dissimilarity of an image pair predicted by
the computational model. Examples of the model RDMs are shown in

Fig. 3D. The comparison between a brain RDM and a model RDM was
based on Kendall's tau-a rank correlation distance of the values in the
upper triangles of the RDMs (Nili et al., 2014).

Gabor wavelet pyramid

The Gabor wavelet pyramid model was adopted from Kay et al.
(2008). Each image was represented by a set of Gabor wavelets of six
spatial frequencies, eight orientations and two phases (quadrature
pair) at a regular grid of positions over the image. To control gain differ-
ences across wavelets at different spatial scales, the gain of each wavelet
was scaled such that the response of that wavelet to an optimal full-
contrast sinusoidal grating is equal to 1. The response of each quadra-
ture pair of wavelets was combined to reflect the contrast energy of
that wavelet pair. The outputs of all wavelet pairs were concatenated
to have a representational vector for each image. The pair-wise dissim-
ilarities (1 — correlation) of these vectors were computed to obtain the
Gabor wavelet model RDMs for the natural images.

Gist

The spatial envelope or gist model aims to characterize the global
similarity of natural scenes (Oliva and Torralba, 2001). The gist descrip-
tor is obtained by dividing the input image into 16 bins, and applying
oriented Gabor filters in 8 orientations over different scales in each
bin, and finally calculating the average filter energy in each bin. The
gist descriptors for each natural image were compared to each other
to obtain the Gist RDMs.
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Fig. 3. Representational similarity analysis and computational model predictions of natural image representations. A) An example stimulus image is shown. B) An example representational
similarity matrix (RDM) is shown for visual area V1 of subject S1. The RDM captures the pair-wise dissimilarities between the response patterns elicited by the stimuli, here 70 different
natural images. By definition, the RDM is symmetric and has a zero diagonal. C) In a split-data RDM, the dissimilarities are computed between separate presentations of the same set of stimuli.
The diagonal of the split-data RDM reflects the replicability of the response patterns between the first and second stimulus presentation. D) Example RDMs for the four different models are

shown for a set of 70 natural images (GWP = Gabor wavelet pyramid).

Animate-inanimate distinction

A categorical distinction based on animate and inanimate objects
has been suggested to be a fundamental organization principle of
the higher-level object-responsive cortex (Connolly et al., 2012; Kiani
etal., 2007; Kriegeskorte et al., 2008b; Naselaris et al., 2012). The natural
image stimuli were labeled as animate if they contained one or several
humans or animals, bodies of humans or animals, or human or animal
faces. In the animate-inanimate model RDM, the dissimilarities are
either O (identical responses) if both images are of the same category
(animate or inanimate) or 1 (different responses) if one image is
animate and the other is inanimate.

Searchlight analysis

The main analyses were performed using pre-defined ROIs. To
explore the effects more generally within the whole scanned brain vol-
ume, we performed searchlight analysis (Kriegeskorte et al., 2006). A
spherical searchlight of 4.5-voxel radius was positioned at each location
of the scanned brain volume. Within each location, the response-
pattern-means and RDMs were extracted and correlated with the corre-
sponding metrics from a reference ROI. Correlation maps were con-
structed from the results. This was repeated for the 25 experimental
runs. The results were FDR corrected for multiple comparisons.

Trial averaging

The effect of the number of fMRI response trials averaged was stud-
ied using a second set of fMRI data from the same subjects, where we
had 13 trials for 120 natural images (for details, see the image identifi-
cation data in Kay et al. (2008)). The representational similarity analysis
was applied separately for data from each experimental run with 12
different natural images. The trials were divided to two independent
data sets (odd and even trials, the 13th trial excluded from the analysis),
and the number of response patterns averaged was varied between 1
and 6. The averaged response patterns were used for representational
similarity analysis.

Simulations

We simulated the effect of coherent response fluctuations on RDM
similarity of two regions-of-interest: the primary visual cortex (V1;
150 voxels) and fusiform face area (FFA; 100 voxels). The simulated
FFA showed different response profiles for ‘faces’ (mean response-
pattern amplitude: 6, response-pattern variance: 2), ‘bodies’ (mean: 2,
variance: 1) and ‘objects’ (mean: 1, variance: 2). The simulated V1
showed no preference for any stimulus category. Gaussian noise was
added to the simulated ground-truth response-patterns. The respon-
siveness of the voxels within V1/FFA was modeled by a gain field.
Next, coherent intrinsic fluctuations were simulated by adding a com-
ponent to the response-patterns that has the same amplitude fluctua-
tions across time in both V1 and FFA. Because the responsiveness of
each voxel to the fluctuations was also modulated by the gain fields,
the additive component sufficed to cause similar RDMs between V1
and FFA.

Results

Visual areas contain image information and exhibit replicable
representational geometries

We studied fMRI response patterns for 1750 natural images in visual
areas V1, V2,V3,V4,V3A, V3B, and LO. A portion of this data set has pre-
viously been analyzed with voxel-receptive-field modeling (Kay et al.,
2008). The previous analysis showed that fMRI signals from the
human visual cortex can be modeled by a Gabor wavelet pyramid. The
distinct response patterns for the natural images were captured here
by RDMs. Fig. 3B shows, as an example, a V1 RDM in which each cell
compares the V1 response-patterns elicited by two different natural
images. An RDM captures the pairwise dissimilarities of the response
patterns and can thus be directly compared to an RDM of a different
brain region (without any need for voxel-to-voxel matching of the
response patterns) or to an RDM describing the representational
geometry of a computational model (Kriegeskorte et al., 2008a).
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First to confirm the suitability of the data for representational simi-
larity analysis, the distinctness of the response patterns for the natural
images was studied using split-data RDMs in which each cell compares
the response patterns between different trials for the same images (for
an example, see Fig. 1C). The diagonal of the split-data RDM reflects the
replicability of the response patterns for the repeated presentation of
the same stimulus images. An exemplar-discriminability index was cal-
culated by subtracting the mean of the diagonal values from the mean of
the off-diagonal values. Fig. 4A shows the results on exemplar discrim-
inability. For all three subjects, the most distinct response patterns were
found in V1. The exemplar discriminability indices were greater than
zero in all studied visual areas (p < 0.05, one-sample t-test, for each
visual area in each subject). This indicates that response patterns
contain information about the stimuli.

Beyond the mere presence of information about the image present-
ed, we asked whether the RDMs were replicable. RDM replicability was
assessed by rank correlation. RDM replicability would indicate that pairs
of images are not all equally distinctly represented, but that some pairs
are reliably represented as more similar than others. Fig. 4B shows re-
sults on the replicability of the response-pattern dissimilarity structure.
Here we compared single-trial RDMs based on two separate presenta-
tions of the stimuli. In all subjects, the RDM was best replicated in V1.
For subject S1, the RDMs showed replicable structure in all studied
visual areas (p < 0.05, one-sample t-test, n = 25). For subject S2, the
single-trial RDMs did not show replicable structure in areas LO and
V3A (p > 0.05). For subject S3, the RDMs did not show replicable
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Fig. 4. Distinct fMRI response patterns and replicable similarity structures for natural
image stimuli. A) Results on the distinctiveness of the response patterns for the natural
images are shown separately for the seven visual areas in each of the three subjects
(S1, S2, S3). The error-bars indicate SEMs across the 25 experimental runs. The black
dots below the bars indicate statistically significant results (t-test, p < 0.05). B) Results
on the replicability of the representational similarity structure for the natural image
stimuli are shown separately for the visual areas and subjects. The error-bars indicate
SEMs across the 25 experimental runs. The black dots below the bars indicate statistically
significant results (t-test, p < 0.05).

structure in LO (p > 0.05) but the results for all other studied areas
were significant (p < 0.05).

Taken together, these results confirmed that this data set with its
rich sample of stimuli is suitable for representational similarity
analysis.

Gabor model explains early visual representation, LO exhibits categorical
clusters

We compared the visual-area RDMs to RDMs constructed based
on three different models: Gabor wavelet pyramid model (GWP), Gist
and categorical animate-inanimate distinction. Examples of the model
RDM:s are shown in Fig. 3D. The Gabor wavelet pyramid is considered
as the standard model of visual area V1 (Carandini et al., 2005). The
Gist model has been suggested to capture the global features of natural
scenes relevant for scene categorization (Oliva and Torralba, 2001). The
categorical animate-inanimate model was chosen based on previous
studies suggesting this as a fundamental organizing principle of
higher-level object responsive areas (Kiani et al., 2007; Kriegeskorte
et al,, 2008b; Naselaris et al., 2012).

Fig. 5 shows the results on the model fits to the empirical RDMs
of different visual areas. The model fit was assessed using Kendall's
tau-a rank correlation between a visual-area RDM and a model
RDM. This measure reflects how well the ranking of the response-
pattern dissimilarities for a visual area was explained by the ranking
of the dissimilarities of the model's response patterns. In contrast to
the voxel-receptive-field modeling approach (Kay et al., 2008), where
each voxel response is predicted as a linear combination of model
responses, the RSA approach obviates the need to estimate any
parameters from the data here. In all subjects (Fig. 5), the V1 RDM
was best explained by the Gabor wavelet pyramid model. The Gist
model also captured some of the response variance but was not as
good fit as the GWP. The GWP was also the best model for the re-
sponse profiles of visual areas V2 and V3. In V4, all models produced
comparable model fits. The animate-inanimate model was the best-
fitting model for area LO, especially for subject S1 (Fig. 5A). For sub-
jects S2 and S3, the results on the RDM replicability (Fig. 4B) already
suggested noisy LO data. Area LO was localized based on retinotopic
criteria (see the Materials and methods section for details), and
therefore, the LO in subjects S2 and S3 may only partially overlap
with the object-responsive lateral occipital cortex.

Visualizations of the response-pattern dissimilarities for all 1750
natural images for visual areas V1 and LO are shown in Fig. 5D. The stim-
uli were color-coded based on the animate-inanimate distinction. Each
dot represents an individual stimulus. The distances between the dots
reflect response-pattern dissimilarities. This multidimensional scaling
visualization of the response-pattern dissimilarities is unsupervised
(i.e., without any assumptions of a categorical structure), and hence
any observed distinctions are data-driven. None of the subjects shows
categorical clustering of the animate and inanimate stimuli in V1. In
contrast, a global grouping of the stimuli reflecting the categorical clus-
tering between animate (red dots) and inanimate (blue dots) natural
images is evident in area LO, especially in subject S1 (Fig. 5D, top
row). Our results show that the animate/inanimate distinction emerges
at a later processing stage and is not due to low-level visual-similarity
effect between the categories that would be present already at the
level of V1.

The shift from the GWP to the categorical animate-inanimate dis-
tinction appears a plausible characterization of the changes in the repre-
sentations of natural images across hierarchy of visual areas. Next we
address how much of the response variance the selected models ex-
plain. Do the best-fitting models explain all replicable variance in the
data, or is a replicable component left unexplained? This leads us to
the question of the relative contributions of the intrinsic response fluc-
tuations and stimulus-driven effects on response-pattern similarity.
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LO for the 1750 natural images (dissimilarity: 1 - Pearson's linear correlation, criterion: metric stress) labeled as animate (red) or inanimate (blue). The results are shown separately
for each subject. A clear categorical clustering is evident in area LO of subject S1, but not in V1 in any of the subjects.

RDMs are highly similar among visual areas when estimated from the
same trials

The transformation of representational similarity structure along the
ventral visual stream can be investigated by comparing RDMs between
visual areas. Fig. 6 shows second-order dissimilarity matrices, where the
RDMs of visual areas were compared to each other both within and be-
tween subjects, and to the two best-fitting model RDMs (GWP and an-
imate-inanimate). In Fig. 6A the visual area comparisons were done
between RDMs constructed from response patterns that were estimated
on the basis of the same (first) trials. Fig. 6B shows the corresponding
multidimensional scaling (MDS) arrangement where the RDMs of dif-
ferent subjects and of the two models are shown with different colors
(S1 = blue, S2 = green, S3 = purple, Gabor wavelet pyramid
model = black, categorical animate-inanimate model = red). The
structure in the RDM as well as the MDS visualization show grouping
of the visual areas based on the subject, not visual hierarchy. That is,
the visual area RDMs were always most similar to the RDMs of other
visual areas of the same subject. This would suggest that the models
do not explain the stimulus representations in the visual areas very
well. However, the following analyses show that the within-subject
similarity of the RDMs was driven by the intrinsic dynamics (which
are shared among areas within, but not between, subjects).

RDMs are distinct among visual areas when estimated from separate trials

Next we compared the visual area RDMs constructed from response
patterns that were estimated on the basis of separate trials. That is, the
compared RDMs only shared the stimulus-driven component. Fig. 6C
shows the second-order dissimilarity matrix and Fig. 6D the corre-
sponding MDS arrangement of the RDM relationships. The results are
very different from the same-trial results shown in Figs. 6A-B. The use
of separate trials to compare the RDMs revealed clearer distinctions
between the visual areas and broke the grouping based on individual
subjects. This shows that the clustering of the RDMs by subject in the
previous analysis (Fig. 6B) did not result from each subject having an
idiosyncratic stimulus-driven representation that is similar across his
or her visual areas. Instead, intrinsic dynamics unrelated to the stimuli
(which are not shared between repeated presentations of the same
stimulus or between subjects) account for the RDM clusters.

When the effect of intrinsic dynamics is controlled for by comparing
only RDM estimates based on separate sets of trials between cortical
areas, the transformation of the stimulus-driven representations can
be accurately assessed. Fig. 6D shows a multidimensional scaling
arrangement that reveals the relationships among areas and models.
RDMs now cluster by visual area, instead of by subject. The V1 RDMs
of all subjects cluster around the GWP-model RDM. The LO RDMs of
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Fig. 6. Relating natural image representations between different visual areas, subjects and model predictions. A) A second-order similarity matrix of RDMs of visual areas (V1, V2, V3, V4,
LO) in all three subjects (S1, S2, S3) and the two best-fitting models (GWP = Gabor wavelet pyramid, Anim = categorical animate-inanimate model) is shown, and B) the corresponding
multidimensional-scaling arrangement (metric-stress) of the representational dissimilarities. The distances reflect the representational distance between the representations. The visual
areas in the three subjects are color-coded in different colors. C) A second-order similarity matrix of RDMs, where the effects of coherent trial-to-trial fluctuations were removed by com-
paring RDMs from separate trials, and D) the corresponding multidimensional-scaling visualization (metric-stress) of the representational relationships. Note that when the comparison
was made between the visual-area RMDs constructed from the same trials (sharing intrinsic dynamics; A-B), the representations were most similar between the visual areas within the
same subject. Whereas, when the comparison was made between visual-area RDMs constructed from separate trials (sharing only stimulus-driven effects; C-D), the V1 representations of
all subjects, for example, were more similar to the GWP model than to the representations in the higher-level visual areas.

all subjects cluster around the animate-inanimate model RDM. With
the similarities among visual-area RDMs no longer inflated by intrinsic
dynamics, the arrangement reflects the stimulus-driven representa-
tions and accurately depicts the relationships among visual areas and
models.

The Gabor model explains the stimulus-driven component of the V1
representation

Fig. 7 shows results of quantitative analyses of how well the V1 RDM
was explained by the GWP model compared to other visual areas and to
non-stimulus-driven effects. In each subject, the response-pattern dis-
similarity structure of area V2 explained the V1 RDM far better than
the GWP model when the V1 and V2 RDMs were constructed from
the same trials (sharing intrinsic dynamics; compare red and dark
gray bars in Fig. 7A). However, when the RDMs were constructed
from separate trials, the similarity between V1 and V2 was much
lower (Fig. 7B), confirming that most of the similarity between V1 and
V2 RDMs was not driven by similar stimulus representations but by
intrinsic dynamics and possibly other artefactual factors shared by the
RDMs when same trials are used for estimating the RDMs. Fig. 7
(black lines) also shows the similarity between V1 RDM with its replica-
tion constructed from separate trials. When constructed from the sepa-
rate trials, the correlations between the visual area RDMs are in the

same range with the GWP model (Fig. 7B). The GWP model actually
outperformed the replication V1 RDM in each subject, reflecting the
fact that both estimates of the V1 RDMs are noisy, whereas the GWP
model is noise-free (no acquisition noise).

Coherent response fluctuations within visual cortex

Correlated fMRI response fluctuations in the absence of sensory
stimulation are assumed to reflect intrinsic activity fluctuations within
connected brain regions. We performed a searchlight analysis to explore
the extent and specificity of the coherent response-pattern fluctuations
and RDM correlations in our data. A spherical searchlight was posi-
tioned at each location of the scanned brain volume (Kriegeskorte
et al., 2006). Within each location, the trial-to-trial response-pattern-
mean (averaged across the voxels within the searchlight) as well as
the RDM (correlation distances between the response-patterns for the
stimuli within the searchlight) were extracted and correlated with the
corresponding metrics from a reference ROIL The right LO was selected
as the reference RO, i.e., the “seed region”. A high correlation of re-
sponse fluctuations was expected within visual cortex and especially
with the corresponding region in the left hemisphere. In addition,
left LO and right LO were expected to show similar stimulus-driven
representations as reflected in similar RDMs estimated on the basis of
separate trials. Similar visual representations cannot be assumed for
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tau-a rank-correlation between single-trial V1-RDM and the GWP model. The dark gray
bars show the mean rank-correlation between the single-trial V1 RDM and the single-
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the correlation between V1 RDMs constructed from separate trials and thus the stimu-
lus-driven effects. The results are shown separately for each subject (in different rows)
and the error-bars indicate SEMs across the 25 experimental runs. B) Separate-trial RDM
comparisons. The red bars (GWP model comparison) and black lines (V1 RDM replicability
results) are the same as in (A), note the different y-axis. The dark gray bars show the mean
rank-correlation between the V1 and V2 RDMs constructed from separate trials. The light
gray bars show the mean rank-correlation between V1 RDMs of different subjects con-
structed from trials with different temporal sequence. C) Effects of mean-response and
temporal distance on RDMs. The blue bars show the mean rank-correlation between the
V1-RDM and mean-response RDM. In this simple model of the coherent response-pattern-
fluctuations, each cell in the RDM contains the absolute difference between the response-
pattern-means divided by the sum of the absolute values of the response-pattern-means
between a pair of stimuli. The green bars show the mean rank-correlation between the
V1-RDM and the temporal distance RDM, in which each cell contains the temporal dis-
tance between the presentations of a pair of stimuli. The black lines (V1 RDM replicability
results) are the same as in (A-B), note the different y-axis.

low-level visual areas, where left and right visual fields are represented
in opposite hemispheres.

Fig. 8A shows the results on trial-to-trial response-pattern-mean
correlations (Pearson's linear correlation). The upper panel is equivalent
to a functional connectivity analysis, where the seed “time course” is the
trial-to-trial pattern mean from the right LO and this is correlated with
trial-to-trial pattern mean of a spherical searchlight at each location. The
correlations were high especially within the visual cortex. When the
analysis was done between trial-to-trial mean signals for the same
stimuli from different trials (lower panel in Fig. 8A), the correlations

were significant only around the location of the reference ROL. This sug-
gests that there is a small stimulus-driven component also in response-
pattern-means, but most of the same-trial response-mean correlations
are not stimulus-driven. This finding is consistent with the presence of
coherent intrinsic response fluctuations within the visual cortex.

Fig. 8B shows the searchlight analysis for RDM similarity. The RDM
of the right LO was correlated (Spearman's rank correlation) with
RDM of a spherical searchlight at each location. The results for the
same-trial RDM correlations (upper panel) resemble the results on the
same-trial response-pattern-mean correlations shown in the upper
panel of Fig. 8A. The lower panel of the Fig. 8B shows the results when
the reference RDM from the right LO was correlated with RDMs
constructed from response patterns within the spherical searchlights
estimated on the basis of different trials for the same stimuli. This
searchlight analysis picked up the right LO and the corresponding
region in the opposite hemisphere, suggesting similar stimulus repre-
sentations in these regions. These results support the conclusion that
intrinsic cortical dynamics inflate the similarity of visual area RDMs
and that the stimulus-driven similarity between the representations in
different areas can be revealed by studying separate trials for the same
stimuli.

More dissimilar response patterns for trials more separated in time

In addition to the coherent fluctuations of the overall activity within
the visual cortex, are there other non-stimulus related factors affecting
the RDM similarity? We did find that the temporal sequence of stimulus
presentation also had an effect on RDM similarity. In this data, the
stimulus images in all experimental runs were different but they were
presented using the same sequence (including timing of null trials and
timing of the repetitions of the same stimuli).

The appearance of an RDM depends on the chosen stimulus order. If
an RDM is ordered to follow the presentation sequence of the stimuli, is
there a visible effect of the temporal structure on the response-pattern
dissimilarity? Fig. 9A shows a V1 RDM where the two trials for the 70
natural images within an experimental run were treated as separate
conditions (RDM dimensions: 140 x 140). Here the ordering of the
conditions in the RDM follows the numbering of the stimulus images
(1-70). The first half corresponds to the first presentations of the
images, the second half to the second presentations. In Fig. 9B, the con-
dition labels were reordered based on the temporal sequence of the
stimulus presentation. In Fig. 9C, these reordered RDMs were averaged
across experimental runs. Because different natural images were shown
using the same temporal sequence in all runs, the result should resem-
ble an RDM, where the response patterns are similar for repeated pre-
sentations of the stimuli and dissimilar for all other comparisons
(Fig. 9D). This is indeed observed (detail 1 in Figs. 9C, D). However,
the RDM also exhibits a prominent structure of low dissimilarities
around the diagonal, which indicates that response patterns for stimuli
presented close in time evoked more similar response patterns than
stimuli presented further apart. The similarity of response patterns ac-
quired close together in time is consistent with a slow drift in pattern
space that could be related to head motion and/or drifts of the state of
the scanner and the subject's physiological state. A similar drift was
also seen in RDMs from other visual areas (Supplementary Fig. 1; and
for more detailed analysis of the drifts, Supplementary Fig. 2). These
global pattern drifts most likely contribute to the high correlation
between RDMs of neighboring visual areas (Figs. 6A, 7A) when same-
trial RDMs are compared.

Fig. 7C shows results of quantitative analyses of how well the V1
RDM in each subject was explained by the temporal-distance between
the stimuli (green bars). This result likely also explains the difference
in the results of the between-subject V1 correlation in Figs. 7A and B
(light gray bars): the use of the same stimulus sequence inflated the
between-subject RDM similarity (Fig. 7A). In addition, a simple quanti-
fication of the contribution of the coherent response fluctuations is
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Fig. 8. Searchlight analysis of the response-pattern fluctuations and RDM correlations across the visual cortex. A) The trial-to-trial response-pattern-mean signals from the right LO (subject
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the corresponding regions in the two hemispheres. B) The RDM of the right LO was correlated with RDMs within a spherical searchlight at each location. The upper row shows the results
for same-trial RDM correlations and the bottom row for separate-trial RDM correlations. When the reference-RDM was constructed from separate trials (bottom row), the searchlight
analysis identified similar representations only in corresponding regions in the two hemispheres. Note the similarity of the same-trial RDM and same-trial response-pattern fluctuations
across the visual cortex (upper rows A-B), likely reflecting the contribution from intrinsic cortical dynamics.

included in Fig. 7C (blue bars). The effect of the coherent response fluc-
tuations was modeled as the absolute difference of the mean-responses
divided by the sum of the absolute values of the mean-responses
(mean-response RDM). This is a simple quantification of the response
dynamics and a more comprehensive modeling of the phenomenon re-
mains for future work. In summary, same-trial RDM comparisons be-
tween brain regions are confounded by both the correlated response
fluctuations and the temporal sequence-related pattern dissimilarity
structure. This further reinforces the importance of using independent
trials when drawing conclusions from exploratory analysis of RDM
similarity between brain regions.

Higher similarity of same-trial RDMs is not eliminated by averaging
more trials

Thus far, our conclusions are based on single-trial RDM comparisons.
Could the contribution of the coherent response fluctuations on RDM
similarity between neighboring brain regions be eliminated by averag-
ing more trials? We addressed this question with a data set where we
had 12 responses for 120 natural images (Kay et al., 2008). The results
are shown in Fig. 10. The similarity of the same-trial RDMs was de-
creased when more trials were averaged (first column in Fig. 10). This
is consistent with a contribution from correlated intrinsic fluctuations,
which is expected to be reduced by averaging. At the same time, the
similarity of RDMs estimated on the basis of separate trials was in-
creased when more trials were averaged (second column in Fig. 10).
Nevertheless, the correlation between the same-trial V1 and V2
RDMs remained much higher than the correlation between the RDMs
estimated from separate trials. Hence, trial averaging appears insuffi-
cient to remove the non-stimulus-driven same-trial effects on RDM
similarity.

Representational dissimilarities in V1 are distinct from V2, and not fully
explained by the Gabor model

Trial-averaging revealed a clear ordering of the RDM correlations
(Fig. 10). The separate-trial RDM correlations are interpretable in
terms of stimulus representational geometry. The V1 RDM was best ex-
plained by its replication in the same subject, followed by the same-
subject V2 RDM and the other-subject V1 RDM. This suggests that the
representational geometries are individually unique in V1. Finally, the
basic GWP model's representational geometry could not fully explain
the V1 representation.

In summary, although trial averaging reduced non-stimulus-
driven effects on the response patterns, it did not remove the effect
of the same-trial coherent response fluctuations on the representa-
tional similarity between neighboring visual areas of the same sub-
ject. Using RDMs constructed from response patterns estimated on
the basis of separate trials, we were able to reveal subject-unique
representational geometries, differences in representation between
different visual areas, and the limits of the Gabor model in explaining
V1.

Discussion

Intrinsic cortical dynamics are a major feature of cortical activity. Our
results suggest five main conclusions: (1) Intrinsic dynamics exert a
major influence on estimates of stimulus-related activity patterns and
their dissimilarity structure. (2) The influence is such that representa-
tional dissimilarity matrices appear much more similar between two
brain areas when estimated on the basis of the same trials than when
estimated on the basis of a separate set of trials for each area. (3) A par-
ticular variant of intrinsic dynamics described in the literature, coherent
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fluctuations of activity across multiple areas, can account for this assim-
ilation of the apparent representational geometries of two areas. Future
studies will be needed to assess the intrinsic dimensionality of the
intrinsic fluctuations and their functional role. (4) Response pattern es-
timates are also affected by substantial pattern drifts, which might be
related to head motion, scanner state, or the subject's physiological,
emotional, or cognitive state. As a result of the pattern drift, two stimuli
presented further apart in time will tend to be associated with more dis-
similar pattern estimates. Single-trial-based RDM estimates therefore
exhibit a stimulus-sequence-related component, which also creates
spurious RDM correlations between different areas, when the same se-
quences have been used to estimate the RDMs. (5) The stimulus-driven
component of the representation of a set of stimuli in two brain
areas can be compared using a separate set of trials, which have been
presented in independent random orders, to estimate the response
patterns for each area. This approach avoids both the confound of
correlated intrinsic fluctuations and the confound of sequence-related
pattern similarity structure.

Coherent response-pattern fluctuations between visual areas

From our data, we can only speculate the source of the coherent
response-pattern fluctuations between the visual areas. A likely inter-
pretation is the trial-to-trial variability in fMRI signal correlations that
reflects underlying intrinsic spontaneous neural activity (Nir et al.,
2008). The simulation and the observed coherent response-pattern
fluctuations within the visual cortex support this conclusion.

We proposed that the contribution of the intrinsic fluctuations can
be removed by comparing RDMs constructed of separate trials. The
strong effect of correlated fluctuations suggests that explicitly modeling
and regressing out such effects before pattern analyses might strongly
reduce the noise and improve the estimates. This is achieved, for exam-
ple, by the GLMdenoise method (Kay et al., 2013a). Because modeling
out the correlated fluctuations will never work perfectly, formal com-
parisons between regional representational geometries will likely still
require RDM estimates from separate sets of trials acquired with inde-
pendent random sequences. Similarities between RDMs of the same
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visual area in different subjects can also reveal the amount of stimulus-
related effects in the RDM. In between-subject RDM comparisons, each
subject should have different random stimulus presentation order, that
is, the stimuli should be counterbalanced. This will prevent the temporal
proximities of the stimuli from causing artefactual correlation of the
pattern dissimilarities between the subjects.

We have emphasized that the intrinsic trial-to-trial variability in the
response-pattern similarity can obscure the underlying stimulus-driven
effects and thus confound results on representational similarities be-
tween brain regions. However, the trial-to-trial response fluctuations
most likely have functional significance. Presumably the fluctuations
are related to changes in the subject's instantaneous state, such as
attention and vigilance, and affect also the perception of the stimuli.
Better reproducibility of fMRI response patterns has been previously
associated with conscious perception (Schurger et al., 2010) and better
memory (Xue et al., 2010) of visual stimuli. Furthermore, the effects of
the temporal context of the stimuli on the response-pattern similarity

could also be addressed in more detail in future studies. Visual cortex
has been shown to show rapid adaptation effects to the structure of
image stimuli at the single-neuron level (Muller et al., 1999) and at
the level of neural populations (Benucci et al., 2013). This is likely also
reflected in the pattern representations as measured with fMRI. Future
work is needed to characterize the non-stimulus driven component of
the response-patterns in more detail and to study its functional signifi-
cance. The present experimental design of passive viewing of natural
images is not suited to characterize for example the effects of attention
(see, e.g., Ress et al., 2000) on the response-pattern similarity structure
between visual areas.

Relating fMRI results to computational model predictions of the underlying
visual representations across stages of processing

RSA (Kriegeskorte, 2009; Kriegeskorte et al., 2008a; Nili et al., 2014)
and voxel-receptive-field modeling (Kay et al., 2008; Kay et al., 2013b)
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are two complementary approaches to directly relate computational
models with fMRI data. Voxel-receptive-field modeling aims to con-
struct a computational model for each fMRI voxel and predict the re-
sponses for new stimuli, whereas RSA aims to predict the response-
pattern similarity for a set of stimuli. We employed data that had been
previously used as training data in voxel-receptive-field modeling.
RSA does not require separate training data when the models have no
free parameters to be estimated from the data. The model fit is deter-
mined by the correlation between the model RDM and a brain RDM.
Here the stimulus set differed from previous RSA studies in that it was
richer (>1000 images, as opposed to 96 in Kriegeskorte et al. (2008b);
for a review, see Kriegeskorte and Kievit (2013)). Our results confirm
that this type of stimuli can be used with RSA to address questions on
how representation of visual information is transformed along stages
of the visual system and to test alternative computational models. Our
results on the model fits are consistent with previous studies showing
that the representation of natural images in V1 can be explained by a
Gabor wavelet model at the level of neural population codes (Weliky
et al.,, 2003) and fMRI response patterns (Kay et al., 2008; Naselaris
et al., 2009). The categorical clustering of responses for animate and
inanimate objects in higher-level visual area is also consistent with pre-
vious work (Connolly et al., 2012; Kiani et al., 2007; Kriegeskorte et al.,
2008b; Naselaris et al., 2012).

The present implementation of the GWP model is a simplification of
what we already know about V1; the model does not include properties
such as surround suppression (Cavanaugh et al.,, 2002) or cortical mag-
nification (Duncan and Boynton, 2003). However, taking into account
the noise level in the data, it does a fairly good job at explaining the re-
sponse dissimilarity in V1. However, when more trials were averaged
for the RDMs, the limits of the GWP model in explaining the response
variance became evident. Future studies should seek a computational
account of both the prominent category divisions and the within-
category representational geometry of LO. This might be achieved by
testing a wider range of computational models (including newer
models such as those of Freeman et al. (2013) and Kay et al. (2013b)),
with the aim also of characterizing the representational organizing prin-
ciples of the intermediate-level visual areas (V2-4), in more detail. This
would lead to a better understanding of the processing steps between
the local, low-level image processing in V1 and the more global,
category-selective representations in the higher-level visual areas.

Conclusion

We found that coherent fMRI response-pattern fluctuations be-
tween visual areas can dominate representational similarities over
stimulus-driven effects. Hence we suggest that representational
similarity of brain regions should be addressed using response patterns
estimated on the basis of separate fMRI trials. Here this approach
revealed clear distinctions between the regions. More generally, our
findings indicate that intrinsic cortical dynamics may have a significant
contribution to representations as studied using multi-voxel fMRI
pattern analysis.
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