Run GLMstandard on dataset 1

Contents

Download dataset 1 (if necessary)

DNBdownloaddata(1);
Downloading dataset01.mat (please be patient).
Downloading is done!

Load dataset 1

dataset = DNBloaddata(1,'all');

Inspect contents of dataset 1

dataset
dataset = 

             stimdur: 3
                  tr: 1.3238
    motionparameters: {1x10 cell}
                data: {1x10 cell}
              design: {1x10 cell}
           voxelsize: [2.5000 2.5000 2.5000]
             runsets: [1 1 2 2 3 3 4 4 5 5]
            runtypes: [1 2 1 2 1 2 1 2 1 2]
                 hrf: [40x5 single]
             meanvol: [64x64x21 single]
           brainmask: [64x64x21 logical]

dataset.data
ans = 

  Columns 1 through 4

    [4-D single]    [4-D single]    [4-D single]    [4-D single]

  Columns 5 through 8

    [4-D single]    [4-D single]    [4-D single]    [4-D single]

  Columns 9 through 10

    [4-D single]    [4-D single]

size(dataset.data{1})
ans =

    64    64    21   265

dataset.design
ans = 

  Columns 1 through 4

    [265x69 double]    [265x69 double]    [265x69 double]    [265x69 double]

  Columns 5 through 8

    [265x69 double]    [265x69 double]    [265x69 double]    [265x69 double]

  Columns 9 through 10

    [265x69 double]    [265x69 double]

dataset.motionparameters
ans = 

  Columns 1 through 4

    [265x6 double]    [265x6 double]    [265x6 double]    [265x6 double]

  Columns 5 through 8

    [265x6 double]    [265x6 double]    [265x6 double]    [265x6 double]

  Columns 9 through 10

    [265x6 double]    [265x6 double]

Run GLMstandard (GLMdenoise without noise regressors) on dataset 1

DNBrun(1,'GLMstandard');
*** DNBevaluatemethod: evaluating method DNBmethod_GLMstandard on dataset 1. ***
*** DNBevaluatemethod: performing cross-validation iteration 1 of 5. ***
*** GLMdenoisedata: performing full fit to estimate global HRF. ***
fitting model...done.
preparing output...done.
computing SNR...done.
*** GLMdenoisedata: performing cross-validation to determine R^2 values. ***
cross-validating model........done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: determining noise pool. ***
*** GLMdenoisedata: calculating global noise regressors. ***
*** GLMdenoisedata: selected number of PCs is 0. ***
*** GLMdenoisedata: fitting final model (no denoising, for comparison purposes). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: fitting final model (with denoising). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: calculating denoised data and PC weights. ***
*** GLMdenoisedata: generating figures. ***
*** DNBevaluatemethod: performing cross-validation iteration 2 of 5. ***
*** GLMdenoisedata: performing full fit to estimate global HRF. ***
fitting model...done.
preparing output...done.
computing SNR...done.
*** GLMdenoisedata: performing cross-validation to determine R^2 values. ***
cross-validating model........done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: determining noise pool. ***
*** GLMdenoisedata: calculating global noise regressors. ***
*** GLMdenoisedata: selected number of PCs is 0. ***
*** GLMdenoisedata: fitting final model (no denoising, for comparison purposes). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: fitting final model (with denoising). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: calculating denoised data and PC weights. ***
*** GLMdenoisedata: generating figures. ***
*** DNBevaluatemethod: performing cross-validation iteration 3 of 5. ***
*** GLMdenoisedata: performing full fit to estimate global HRF. ***
fitting model...done.
preparing output...done.
computing SNR...done.
*** GLMdenoisedata: performing cross-validation to determine R^2 values. ***
cross-validating model........done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: determining noise pool. ***
*** GLMdenoisedata: calculating global noise regressors. ***
*** GLMdenoisedata: selected number of PCs is 0. ***
*** GLMdenoisedata: fitting final model (no denoising, for comparison purposes). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: fitting final model (with denoising). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: calculating denoised data and PC weights. ***
*** GLMdenoisedata: generating figures. ***
*** DNBevaluatemethod: performing cross-validation iteration 4 of 5. ***
*** GLMdenoisedata: performing full fit to estimate global HRF. ***
fitting model...done.
preparing output...done.
computing SNR...done.
*** GLMdenoisedata: performing cross-validation to determine R^2 values. ***
cross-validating model........done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: determining noise pool. ***
*** GLMdenoisedata: calculating global noise regressors. ***
*** GLMdenoisedata: selected number of PCs is 0. ***
*** GLMdenoisedata: fitting final model (no denoising, for comparison purposes). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: fitting final model (with denoising). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: calculating denoised data and PC weights. ***
*** GLMdenoisedata: generating figures. ***
*** DNBevaluatemethod: performing cross-validation iteration 5 of 5. ***
*** GLMdenoisedata: performing full fit to estimate global HRF. ***
fitting model...done.
preparing output...done.
computing SNR...done.
*** GLMdenoisedata: performing cross-validation to determine R^2 values. ***
cross-validating model........done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: determining noise pool. ***
*** GLMdenoisedata: calculating global noise regressors. ***
*** GLMdenoisedata: selected number of PCs is 0. ***
*** GLMdenoisedata: fitting final model (no denoising, for comparison purposes). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: fitting final model (with denoising). ***
bootstrapping model....................done.
preparing output...done.
computing model fits...done.
computing R^2...done.
computing SNR...done.
*** GLMdenoisedata: calculating denoised data and PC weights. ***
*** GLMdenoisedata: generating figures. ***
*** DNBevaluatemethod: evaluating predictions against the data. ***
*** DNBevaluatemethod: complete! ***

Inspect the result

a1 = load(strrep(which('DNBrun'),'DNBrun.m',fullfile('DNBresults','GLMstandard_dataset01.mat')));
figure;
imagesc(makeimagestack(signedarraypower(a1.performance/100,0.5),[0 1]),[0 1]);
colormap(hot);